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• Biometric technology that identifies people based on their walking patterns
• Operate from a distance without user’s cooperation or physical contact
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Introduction / Gait Recognition



• Visualization comparison:

Introduction / 3D LiDAR
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→ Well-suited for outdoor criminal investigations or security systems!



Introduction / Motivation
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• Changes in resolution/sparsity based on distances

RGB camera 
(reference)

10 m 20 m 30 m

LiDAR sensor (Velodyne VLP-32C)



Introduction / Motivation
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• Changes in resolution/sparsity based on LiDAR sensor’s emitting pattern (specification)

Velodyne VLP-32CVelodyne HDL-32E Pioneer SSL-S01
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Introduction / Motivation
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• Challenges:
• Sparsity of LiDAR data is heavily influenced by measurement distance and har

dware specifications
• Collecting datasets for all distances and sensor types is practically impossible

→ Necessary to reconstruct the underlying/complete pedestrian shapes
from sparse data!



Introduction / Goal
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• Goals:
• Develope a gait sequence upsampling model for sparse pedestrian data
• Enhance the generalization capability of existing/future identification models

• Approches:
• Employ a video-based diffusion model
• Utilize a distance-independent inpainting strategy
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Related Work

Task-agnostic approaches
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Task-specific approaches

▪ Learn the underlying data distribution using 
Bayes’ rule

▪ Tend to worse than task-specific approaches

• Typical signal/image restoration:

Chung+, ICLR’23 Saharia+, CVPR’22

▪ Conditional diffusion strategy
▪ Achieves superior performance across 

various multi-tasks



Method

• Overview

9

Input: sparse LiDAR gait sequences Our results
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Method / Problem Statement

• In orthographic projection, missing points in gait shapes can be addressed as 
distance-independent inpainting problem
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𝐲 = 𝐻𝐱0 + 𝐳

𝐻𝐲 𝐱0

⊙=

Spherical projection

Orthographic projection

Degradation noise mask

Incomplete gait video

Complete gait video

Gaussian noise



Method / Projection

• Transform a raw pedestrian point cloud sequenc
e 𝐏 ∈ ℝ𝐹×𝑁×𝐶 into a depth video 𝐲 ∈
ℝ𝐹×1×𝐻×𝑊 from the sensor-view

• Obtain the rotated point cloud sequence ෡𝐏 ∈
ℝ𝐹×𝑁×𝐶 with a directional angle 𝜃sensor,𝑓:

• 𝜃sensor,𝑓 = arctan(𝑐𝑓,𝑦, 𝑐𝑓,𝑥)

• ෝ𝐩𝑓,𝑛 = 𝐏𝑓,𝑛 − 𝐜𝑓 ⋅ 𝐑𝑧(𝜃sensor,𝑓 + 𝜋)

• Project ෡𝐏 onto the 𝑥𝑧–plane
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Method / Network

• Overall of the upsampling pipline
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3D U-Net

Orthographic projection 
with depth normalization

Sparse 
point cloud seq. 

Sensor-view

LiDAR 
sensor Inverse projection

Dense 
point cloud seq.

Forward process

Reverse process

𝐳~𝒩(𝟎, 𝐈) 𝐳𝑠 𝐳𝑡 𝐱

Conditional region 
masking/concatenation

Conditional 
observeation 𝐲

Complete projection seq.

• Extended from Palette [Saharia+, CVPR’22]
• Initialization: 𝐳𝑡 ← 𝐦⊙𝐲 + (𝟏 −𝐦)⊙ 𝐳t
• Loss function: ℒ𝑇→∞ = 𝔼𝜖~𝒩 𝟎,𝟏 ,𝑡~𝒰(0,1)[ Ƹ𝜖(concat 𝐲, 𝐳𝑡 ; 𝜆𝑡) − 𝜖 2

2]



Experiments / Implementation Details

• Dataset comparison
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SUSTeck1K [Shen+, CVPR’23] Dataset used in Part I (2/2)

For generalization evaluation For practicality evaluation



Experiments / Implementation Details

• Noise masks used for training and testing in the generalization evaluation
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Pepper noise (𝐏) Vertical lines (𝐕)

× 1/6 × 2/6 × 3/6 × 1/2 × 2/3 × 3/4

▪ Simulate noise in the azimuth based 
on captured distances

▪ Represent the beam-level noise at the 
elevation of the LiDAR sensors



Experiments / Implementation Details
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• SUSTeck1K dataset contains 1,050 subjects
• Training set : 250 subjects
• Test set: remaining 800 subjects

• Learning settings:
• Learning rate: 0.0003
• input sequence length: 10 frames
• Timesteps: 32

• Identifier (for the recognition task): LidarGait [Shen+, CVPR’23]
• trained on the clean training set of SUSTeck1K



Experiments / Generative Evaluation

• Quantitative results:
• Our model is Superior to all linear interpolations and vanilla Palette across 

three metrics
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Experiments / Generative Evaluation
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• Upsampled results using the proposed model across three angles on SUSTeck1K



Experiments / Generative Evaluation

• Upsampled results with various attributes using the proposed model on SUSTeck1K
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Experiments / Generative Evaluation

• Comparison between the proposed model and vanilla Palette [Saharia+, CVPR’22]:
• The proposed model preserves frame-consistency more effectively
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Experiments / Gait Recognition Task

• Quantitative results:
• As the noise masks become more severe, the performance gap between the 

proposed model and the original Palette increases
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• Comparison of the number of function evaluations (NFEs) for the proposed model
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Experiments / Gait Recognition Task
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• Quantitative results:
• Training set: SUSTeck1K with noise masks (with 128-beam LiDAR sensosr)
• Testing set: our collected dataset (with 32-beam LiDAR sensosr)

Experiments / Practicality
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10 m

20 m

Pedestrian

Pedestrian

Bird’s Eyes View 
(Reference)

Spher. projection Ortho. projection Ortho. projection 
w/ ours

Sensor
(VLP-32C)

Sensor
(VLP-32C)

Experiments / Practicality

Environment
(Reference)

• Qualitative results
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Experiments / Practicality

• Qualitative results
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Summary
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• Introduced an upsampling model  for LiDAR-based gait sequence data to address a 
distance-independent inpainting problem

• Demonstrated significant improvements in terms of both generation quality and id
entification performance

• Proved effectiveness even for varying sensor resolution or measurement distance i
n real-world senarios



Thank you for your attention!
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