

Gait Sequence Upsampling using Diffusion Models for Single LiDAR sensors

<u>Jeongho Ahn</u>¹, Kazuto Nakashima¹, Koki Yoshino¹, Yumi Iwashita² and Ryo Kurazume¹ ¹Kyushu University ²JPL/NASA

Jan 22, 2025

Introduction / Gait Recognition

- Biometric technology that identifies people based on their walking patterns
- **Operate from a distance** without user's cooperation or physical contact

Measurement of pedestrian data using a visual device

ID matching with the database

Person identification based on gait analysis [Fan+, CVPR'23]

Introduction / 3D LiDAR

• Visualization comparison:

RGB camera

→ Well-suited for outdoor criminal investigations or security systems!

Introduction / Motivation

• Changes in **resolution/sparsity** based on **distances**

RGB camera (reference)

Introduction / Motivation

• Changes in resolution/sparsity based on LiDAR sensor's emitting pattern (specification)

Introduction / Motivation

- Challenges:
 - Sparsity of LiDAR data is heavily influenced by measurement distance and har dware specifications
 - Collecting datasets for all **distances** and **sensor types** is practically impossible

→ Necessary to reconstruct the underlying/complete pedestrian shapes from sparse data!

Introduction / Goal

- Goals:
 - Develope a gait sequence upsampling model for sparse pedestrian data
 - Enhance the generalization capability of existing/future identification models
- Approches:
 - Employ a video-based diffusion model
 - Utilize a distance-independent inpainting strategy

Related Work

• Typical signal/image restoration:

Task-agnostic approaches

Chung+, ICLR'23

- Learn the underlying data distribution using Bayes' rule
- Tend to worse than task-specific approaches

Saharia+, CVPR'22

- Conditional diffusion strategy
- Achieves superior performance across various multi-tasks

• Overview

Method / Problem Statement

• In orthographic projection, missing points in gait shapes can be addressed as distance-independent inpainting problem

Degradation noise mask Incomplete gait video $\mathbf{y} = H\mathbf{x}_0 + \mathbf{z}$ Gaussian noise Complete gait video

Spherical projection

Method / Projection

- Transform a raw pedestrian point cloud sequenc e $\mathbf{P} \in \mathbb{R}^{F \times N \times C}$ into a depth video $\mathbf{y} \in \mathbb{R}^{F \times 1 \times H \times W}$ from the **sensor-view**
- Obtain the rotated point cloud sequence $\widehat{\mathbf{P}} \in \mathbb{R}^{F \times N \times C}$ with a directional angle $\theta_{\text{sensor},f}$:
 - $\theta_{\text{sensor},f} = \arctan(c_{f,y}, c_{f,x})$
 - $\widehat{\mathbf{p}}_{f,n} = (\mathbf{P}_{f,n} \mathbf{c}_f) \cdot \mathbf{R}_z(\theta_{\text{sensor},f} + \pi)$
- Project $\widehat{\mathbf{P}}$ onto the xz-plane

Method / Network

• Overall of the upsampling pipline

- Extended from Palette [Saharia+, CVPR'22]
- Initialization: $\mathbf{z}_t \leftarrow \mathbf{m} \odot \mathbf{y} + (\mathbf{1} \mathbf{m}) \odot \mathbf{z}_t$
- Loss function: $\mathcal{L}_{T \to \infty} = \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{1}), t \sim \mathcal{U}(0, 1)} [\|\hat{\epsilon}(\operatorname{concat}(\mathbf{y}, \mathbf{z}_t); \lambda_t) \epsilon\|_2^2]$

Experiments / Implementation Details

• Dataset comparison

SUSTeck1K [Shen+, CVPR'23]

For generalization evaluation

Dataset used in Part I (2/2)

For practicality evaluation

Datasets	Sensors	Beams	V/H Resolutions	Subjects	Views	Distances
SUSTeck1K [56]	VLS-128	128	$0.11^{\circ}/0.1^{\circ}$	$1,\!050$	12	$7.5 \mathrm{m}$
Ours $[2]$	VLP-32C	32	$1.33^{\circ}/0.1^{\circ}$	30	8	$10,20~\mathrm{m}$

Experiments / Implementation Details

• Noise masks used for training and testing in the generalization evaluation

 Simulate noise in the azimuth based on captured distances Represent the beam-level noise at the elevation of the LiDAR sensors

Experiments / Implementation Details

- SUSTeck1K dataset contains 1,050 subjects
 - Training set : **250 subjects**
 - Test set: remaining 800 subjects
- Learning settings:
 - Learning rate: 0.0003
 - input sequence length: 10 frames
 - Timesteps: 32
- Identifier (for the recognition task): LidarGait [Shen+, CVPR'23]
 - trained on the **clean training set** of SUSTeck1K

- Quantitative results:
 - Our model is Superior to all linear interpolations and vanilla Palette across three metrics

			Means (Test set)								
Upsampling			$\mathbf{V} \times 1/2, \mathbf{P} \times 1/6$			$\mathbf{V} \times 2/3, \mathbf{P} \times 2/6$			$\mathbf{V} \times 3/4, \mathbf{P} \times 3/6$		
Approach	Method	Input Modality	$\rm PSNR\uparrow$	SSIM \uparrow	Consistency \downarrow	$\mathrm{PSNR}\uparrow$	SSIM \uparrow	Consistency \downarrow	$\mathrm{PSNR}\uparrow$	SSIM \uparrow	Consistency \downarrow
Interpolation	Nearest-neighbor	Depth Image	6.90	0.031	0.041	6.84	0.029	0.043	6.78	0.025	0.045
Interpolation	Bilinear	Depth Image	20.90	0.852	0.016	20.99	0.841	0.017	20.83	0.840	0.019
Interpolation	Bicubic	Depth Image	21.05	0.855	0.017	21.08	0.843	0.017	20.90	0.842	0.019
Diffusion	Palette [52]	Depth Image	26.14	0.940	0.009	24.17	0.908	0.013	23.15	0.888	0.017
Diffusion	Ours w/o masking loss	Depth Video	27.22	0.953	0.007	25.56	0.932	0.010	24.86	0.922	0.011
Diffusion	Ours	Depth Video	27.27	0.954	0.007	25.59	0.932	0.010	24.89	0.922	0.011

Table 4.2: Generative evaluation of the SUSTeck1K dataset with noise masks

• Upsampled results using the proposed model across three angles on SUSTeck1K

• Upsampled results with various attributes using the proposed model on SUSTeck1K

- Comparison between the proposed model and vanilla Palette [Saharia+, CVPR'22]:
 - The proposed model preserves **frame-consistency** more effectively

Frame-inconsistent movements

Experiments / Gait Recognition Task

- Quantitative results:
 - As the noise masks become more severe, the performance gap between the proposed model and the original Palette increases

			Means (Probe set)								
Upsampling			$\mathbf{V} \times 1/2, \mathbf{P} \times 1/6$			$\mathbf{V} \times 2/3, \mathbf{P} \times 2/6$			$\mathbf{V} \times 3/4, \mathbf{P} \times 3/6$		
Approach	Method	Input Modality	Rank1 \uparrow	Rank5 \uparrow	$\mathrm{Rank10}\uparrow$	$\operatorname{Rank1}\uparrow$	Rank 5 \uparrow	Rank10 \uparrow	$\operatorname{Rank1} \uparrow$	Rank5 \uparrow	Rank10 ↑
			1.40	5.85	10.13	0.18	1.08	2.34	0.15	0.82	1.68
Interpolation	Nearest-neighbor	Depth Image	0.17	0.93	1.78	0.17	0.86	1.67	0.16	0.78	1.54
Interpolation	Bilinear	Depth Image	1.35	5.16	8.52	0.62	2.58	4.86	0.44	1.96	3.72
Interpolation	Bicubic	Depth Image	1.51	5.63	9.16	0.73	3.01	5.37	0.52	2.20	4.08
Diffusion	Palette [52]	Depth Image	23.62	48.69	61.07	9.93	26.61	37.31	7.16	13.79	21.82
Diffusion	Ours w/o masking loss	Depth Video	31.69	58.57	70.27	18.07	40.72	53.08	11.38	29.72	41.16
Diffusion	Ours	Depth Video	32.49	59.77	71.28	18.97	42.09	54.52	11.85	30.68	42.26

Table 4.3: Identification Evaluation using a LidarGait on SUSTeck1K dataset with noise masks

Experiments / Gait Recognition Task

• Comparison of the number of function evaluations (NFEs) for the proposed model

Experiments / Practicality

- Quantitative results:
 - Training set: **SUSTeck1K** with noise masks (with **128**-beam LiDAR sensosr)
 - Testing set: our collected dataset (with **32**-beam LiDAR sensosr)

	Upsampling		Overall			
Method	Gallery (10 m)	Probe (20 m)	Projection	$Rank1\uparrow$	Rank5 \uparrow	
			Spher.	5.51	25.98	
			Ortho.	7.07	30.80	
Palette [52]		\checkmark	Ortho.	19.57	56.25	
	\checkmark	\checkmark	Ortho.	25.45	63.54	
Ours		\checkmark	Ortho.	21.28	60.94	
	\checkmark	\checkmark	Ortho.	25.97	66.82	

Table 4.4: Identification results on the real-world dataset [2].

Experiments / Practicality

• Qualitative results

Experiments / Practicality

• Qualitative results

Summary

- Introduced an upsampling model for LiDAR-based gait sequence data to address a distance-independent inpainting problem
- Demonstrated significant improvements in terms of both generation quality and id entification performance
- Proved effectiveness even for varying sensor resolution or measurement distance i n real-world senarios

Thank you for your attention!