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Abstract

Gait recognition is a biometric technology that identifies individuals based on their walking patterns.
In particular, compared to other modalities such as face, fingerprint, or retina, it does not require
user cooperation and allows for measurement from a long distance, making it highly promising for
various person identification applications. With advances in deep neural networks, research on gait
recognition using RGB cameras has made remarkable progress. However, challenges persist, includ-
ing sensitivity to changes in camera angles and variations in lighting conditions, which can degrade
identification performance. Recently, a 3D LiDAR sensor, which scans surrounding environments
to acquire accurate three-dimensional data without being affected by lighting conditions, has been
widely utilized in fields such as mobile robotics and autonomous driving. However, its application
in gait recognition tasks remains limited. The primary challenges include its lower spatial resolution
compared to conventional cameras and the inherent characteristics of 3D LiDAR, where laser beams
diffuse spherically with increasing measurement distance, resulting in sparse pedestrian visual data.

To address these challenges, this dissertation proposes deep learning-based solutions to enhance
identification performance for sparse gait data acquired from 3D LiDAR sensors in long-range envi-
ronments. The dissertation is organized into two parts. In Part I, I present an identification method
based on LiDAR projection that utilizes gait features from multiple viewpoints. From 3D LiDAR
data, a pedestrian’s trajectory is obtained in the global coordinate system, allowing for the estima-
tion of walking direction. This makes it possible to generate invariant gait shapes, such as side and
back views, which predominantly represent gait dynamics. Additionally, I propose several techniques
for this identification method, such as multi-scale resolution encoding and attention-based feature
fusion, to enable the effective learning of gait features under varying measurement distance sce-
narios, thereby maximizing the potential of 3D LiDAR. In Part II, I present an upsampling model
for sparse gait sequence data. Sparse LiDAR gait data is addressed using orthogonal projection,
framing it as an inpainting, which is a type of linear inverse problem. Additionally, a conditional
diffusion model is employed to solve this simplified problem, with its effectiveness demonstrated
through comprehensive experiments on both large-scale and real-world datasets. Taken together,
these models provide distinct advantages across different aspects of LiDAR-based gait recognition.
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Chapter 1

Introduction

1.1 Prologue
In modern society, where the population continues to grow, automating the identification of large
numbers of individuals has become a highly significant challenge. With decades of advancements
in artificial intelligence (AI) technology, biometric person recognition, which leverages individuals’
physiological characteristics, has made remarkable progress. For example, with the development of
computer vision, various biometric modalities, such as iris, face and fingerprint, have made substan-
tial advancements [11, 15, 56]. Among these, gait, which represents individuals’ walking patterns,
has attracted significant attention as a powerful tool in person identification tasks. Unlike other
modalities, gait encompasses unique and dynamic physical as well as behavioral characteristics.
Moreover, it offers the advantage of identifying individuals from a distance without requiring their
cooperation or contact. In addition, it is notable for being non-intrusive and challenging to disguise.
These distinct advantages make gait recognition particularly well-suited for applications in security
systems and criminal investigations [7, 32, 46]. In the medical field, gait patterns are also used to
diagnose or predict neurodegenerative diseases such as Alzheimer’s, underscoring the importance of
gait as a crucial factor in various applications [50,85].

The workflow of the gait recognition system is illustrated in Fig. 1.1. Most gait recognition
studies have predominantly used conventional RGB cameras to capture pedestrians [57]. These
cameras have been adopted as visual sensors for gait recognition due to their affordability, ease of
use, and high spatial resolution. Although significant progress has been achieved with these cameras,
several challenging issues remain. Notably, varying lighting conditions caused by weather, climate,
or background contrast often lead to failures in accurately segmenting pedestrians. Furthermore,
pedestrian shapes can vary significantly depending on the camera’s height, and linear interpolation
may neglect the pedestrian’s actual size, potentially reducing identification performance. To address
these issues, some studies have explored the use of RGB-D cameras in the field of gait recognition,

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: An illustration of a typical gait recognition system.

which can capture depth information [10,80]. However, RGB-D cameras have been reported to have
hardware limitations, such as a short measurement range and susceptibility to environmental noise,
making them more suitable for indoor applications.

For decades, light detection and ranging (LiDAR) technology has played a pivotal role in the
fields of computer vision and robotics, enabling the scanning of surrounding environments in 3D
geometric dimensions. LiDAR operates by emitting laser pulses toward an object and measuring
the distance based on the time it takes for the reflected light to return, as shown in Fig. 1.3
Compared to typical RGB cameras, LiDAR sensors can collect precise geometric information as 3D
point clouds. Additionally, unlike RGB-D cameras, LiDAR sensors are more robust under various
lighting conditions and can measure longer distances due to their active sensing based on short-
wavelength pulsed lasers, making them well-suited for outdoor applications, such as mobile robots
and self-driving vehicles [37,71].

LiDAR sensors have been used primarily for scene understanding tasks in mobile robotics, such
as object detection, tracking, or segmentation [44,70,81]; however, they have rarely been applied as
tools in biometric systems, such as gait recognition. One potential reason is the relatively low spatial
resolution of LiDAR sensors compared to general cameras, which makes it challenging to capture the
detailed shapes of pedestrians. Some studies have shown that acceptable performance is achievable
when identifying individuals at close range [6, 79]. However, due to the inherent characteristics of
most LiDAR sensors, the laser pulses emit in a spherical pattern, causing the 3D point cloud data
to become sparser as the measurement distance increases, as shown in Fig. 1.3. Furthermore, the
resolution of LiDAR sensors also affects the sparsity of gait data, which is a key factor that could
reduce the identification performance.

Despite these issues, LiDAR sensors hold significant potential in the field of gait recognition due
to their ability to accurately capture pedestrian data in long-range 3D environments, even under
challenging conditions such as low light or adverse weather. This capability is expected to overcome
the limitations associated with typical RGB camera-based gait recognition. Furthermore, as the
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(a) RGB camera (b) Depth camera (c) 3D LiDAR sensor

Figure 1.2: Visualization comparison among three visual sensors.

performance of LiDAR sensors improves and their costs decrease over time, their adoption as visual
sensors is expected to increase rapidly. In particular, in mobile robotics and autonomous driving,
where LiDAR technology is essential, outdoor person identification is anticipated to enable a variety
of functions, including individual identification as well as applications such as surveillance robots
and healthcare monitoring. Furthermore, LiDAR is more suitable for protecting individual privacy
compared to general cameras, which capture explicit visual data of an individual’s appearance.

1.2 Goal
Based on the above, the primary challenge in utilizing LiDAR technology for practical gait recog-
nition applications in outdoor environments lies in the sparse point cloud data resulting from long
measurement distances. Motivated by this issue, my aim is to develop a gait recognition system
using 3D LiDAR sensors in long-range measurement environments. Specifically, I propose models
to enhance person identification performance using deep learning, a type of machine learning tech-
nique. Deep learning, as a data-driven approach, is well-known for its effectiveness in analyzing
high-dimensional data. Owing to its power and flexibility, deep learning has found significant ap-
plications across various fields. In particular, it has greatly advanced the field of camera-based gait
recognition [57] due to its capacity to uncover the complex and dynamic walking patterns. In this
dissertation, the study is organized into two thematic parts: (1) the development of gait recognition
models and (2) the development of gait upsampling models.

1.2.1 Study 1: The Development of Gait Recognition Models

The first study involves developing gait recognition models based on LiDAR projection representa-
tions. Data captured from 3D LiDAR sensors can generally be represented in two forms: (1) 3D
point clouds and (2) range images, as illustrated in Fig. 1.4.

In LiDAR point clouds, each point represents xyz coordinates along with additional information
such as intensity. In contrast, range images conventionally quantize each point through spherical
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(a) Pedestrian detection obtained from a LiDAR sensor (b) Sparsity variations in LiDAR gait data

Figure 1.3: Comparison of pedestrian point cloud sparsity according to the measurement distance.

projection, which is determined by the hardware specifications of standard LiDAR sensors. Al-
though the former ideally represents raw data obtained directly from LiDAR sensors and captures
fine-grained patterns, it is often challenging to process due to its unordered nature and the time-
consuming computations required. On the other hand, while the latter may introduce artificial errors
during the quantization of 3D data into 2D grids, it is empirically favored in practical applications,
such as scene understanding for mobile robotics, due to its fast processing speed and effectiveness
in deep learning-related tasks [45, 76–78, 81]. Building on the effectiveness of projection-based ap-
proaches in LiDAR-related tasks, I develope a gait recognition model using a LiDAR projection
strategy.

In a typical gait recognition system, pedestrians in images or videos captured by cameras are
segmented and aligned to a uniform height using linear interpolation before being input into identifi-
cation models. However, with LiDAR images generated through spherical projection, the inherently
low spatial resolution of LiDAR sensors causes gait shapes to shrink significantly during long-range
measurements, increasing quantization errors in the linear interpolation process. To address this
challenge, I utilize orthogonal projection to represent gait features for the proposed recognition
models. Unlike spherical projection, orthogonal projection quantizes the point cloud data in xyz

space, allowing it to accurately reflect the actual size of pedestrians in gait images. Additionally, it
preserves the overall shape of pedestrians, even as the data becomes sparser with increasing captured
distance.



CHAPTER 1. INTRODUCTION 5

(a) 3D point cloud data (b) 2D spherical projection range image

Figure 1.4: Comparison of 3D LiDAR representations

To fully utilize the unique characteristics of LiDAR sensors, which are absent in conventional
cameras, gait features are extracted from multiple viewpoints using orthogonal projection. In LiDAR
data, a pedestrian’s gait trajectory can generally be obtained through the global coordinate system
when the LiDAR sensor is stationary. Leveraging this characteristic, I estimate the walking direction
from the trajectory and project the gait shapes from fixed angles relative to it—specifically, the left-
side and back views—to facilitate identification.

Despite the benefits of orthogonal projection which preserves the size of a target, the challenge
still lies in handling sparse pedestrian shapes captured from long distances. To address this challenge,
I propose a multi-scale spatial encoding strategy, which alleviates the impact of sparsity changes.
Furthermore, in an extended study, an attention block is incorporated into this encoding module to
determine the importance of each scale level based on the sparsity of gait shapes.

1.2.2 Study 2: The Development of Gait Upsampling Models

Recently, research on gait-based person identification using 3D LiDAR has started to gain mo-
mentum, particularly following the release of the large-scale LiDAR gait dataset SUSTeck1K [58].
However, relying solely on identification models to recognize sparse gait data poses challenges in
fully understanding the underlying structure of gait appearance. Given that the representation of
LiDAR data varies across identification models, it is particularly important to restore sparse raw
gait data into complete data that resembles data captured at close range. To address this challenge,
I develop a upsampling model designed for the sparse-to-dense restoration of LiDAR gait sequence
data.

In sparse-to-dense approaches related to LiDAR, spherical projection is commonly used to restore
low-resolution data into high-resolution images, in accordance with the hardware specifications of
3D LiDAR sensors [19, 47, 48]. However, this projection type targets the entire scene scanned by
the LiDAR sensor, and the size of objects within the range image varies depending on the mea-
surement distance. In contrast, the aforementioned orthogonal projection maintains the overall
shapes of objects regardless of changes in the measurement distance. Particularly for long-distance
measurements, the empty pixel regions within the pedestrian can be simplified using inpainting, a
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type of linear inverse problem. Based on this assumption, I leverage orthogonal projection in the
development of an upsampling model for LiDAR gait data. To implement this model, I employ
diffusion probabilistic models (DPMs) [20,27,65], which sequentially corrupt training data by grad-
ually adding noise and then learn to reverse this corruption in order to form a generative model
of the data. DPMs have recently gained significant attention due to their superior diversity and
high fidelity compared to other generative models, such as variational autoencoders (VAEs) [28] or
generative adversarial networks (GANs) [14]. In particular, they have emerged as a key technology
not only for image/video generation [53] but also for solving inverse problem tasks [43,54,63].

1.3 Dissertation Structure
This dissertation is comprised of two thematic parts.

Part 1 focuses on gait-based identification models parameterized by deep neural networks, aim-
ing to enhance identification performance for sparse gait data captured over long distances.

• In Chapter 2, I present an identification model that incorporates invariant two-viewpoint gait
features along with walking speed as inputs. Using the collected dataset, experiments are
conducted to evaluate the robustness of the proposed model to variations in walking direction
and the sparsity of gait data. This chapter is based on [1].

• In Chapter 3, I modify the identification model from Chapter 2 by introducing an attention-
based module that adaptively learns gait features. Using a more comprehensive version of
the collected dataset, experiments are conducted to evaluate the effectiveness of the proposed
model. This chapter is built upon [2].

Part 2 is about developing an upsampling model for sparse LiDAR gait sequence data using
diffusion probabilistic models.

• In Chapter 4, I present a conditional diffusion model for restoring LiDAR gait data using an
orthogonal projection strategy. Additionally, I demonstrate the effectiveness of the proposed
model through comprehensive experiments. This chapter is based on [3].

The discussion and future research avenues are concluded in Chapter 5.



Part I: The Development of
Gait Recognition Models



Chapter 2

Identification Modeling for Range
Variations

2.1 Introduction
RGB cameras dominate as visual sensors in the field of gait recognition [9,12], and several previous
studies have attempted to use depth or range information captured by RGB-D cameras (also known
as depth cameras), such as the Microsoft Kinect [10,80]. Compared to conventional cameras, RGB-
D cameras offer several advantages, such as 3D information and simplified background subtraction.
However, their measurement range and field of view are limited to approximately 10 m and 70◦

respectively, making them challenging to apply in outdoor environments. In recent years, 3D LiDAR
sensors, capable of obtaining 3D range data of targets at distances exceeding 100 meters, have gained
significant prominence. Especially, spinning 3D LiDAR sensors, a common type of 3D LiDAR,
rotate 360 degrees to scan their surroundings and generate comprehensive 3D point clouds of the
environment. Thanks to these characteristics, they have garnered significant attention in computer
vision and have been widely applied in autonomous robots, acting as eyes for tasks such as object
detection and navigation [41, 81]. Compared to RGB and depth cameras, however, these LiDAR
sensors have rarely been used in biometrics. One possible reason is their low resolution, which makes
it challenging to capture complete human shapes. However, considering the unique characteristics
of 3D LiDAR, such as robustness to illumination conditions, long measurement distances, and a
360◦ scanning range in the azimuth, it holds significant potential for outdoor applications as a
biometric identifier. Furthermore, it can be used as an alternative to conventional cameras in terms
of protecting personal information.

I previously proposed an identification model using 3D LiDAR sensors and demonstrated that
3D LiDAR has significant potential for recognition tasks [79]. However, in this study, both the

8
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measurement distance and the walking direction from the 3D LiDAR sensor were constant. This
scenario is applicable when the LiDAR sensor is placed in a corridor or narrow street, with people
walking in a single direction. I anticipate that 3D LiDAR will be increasingly adopted for more
practical applications in person identification systems in the future, involving complex scenarios
such as long-range or wide-area person identification. Additionally, gait recognition using 3D Li-
DAR sensors can serve as a functionality for mobile robots and autonomous driving systems. For
example, security robots, which can operate 24/7 and are less conspicuous than human personnel,
are increasingly being deployed in malls, offices, and public spaces. A nighttime surveillance system
can be achieved by applying biometrics to these security robots without the installation of other
sensors. Moreover, autonomous vehicles can identify and track specific users while in operation.
Given these applications, it is essential to design a robust gait recognition model that accounts for
intra-subject variations, particularly changes in viewing angles and measurement distances.

Building on the aforementioned study [79], this chapter introduces a gait-based person identifica-
tion model using a 3D LiDAR sensor, designed to be robust against variations in measurement range
and walking direction. To reduce the influence of these variations, I focus on two fixed invariant
viewpoints and the walking pace, which may be invariant gait features for the conditions above,
as shown in Fig. 2.1. In contrast to previous studies [79] that employed spherical projection from
the sensor’s perspective, this model utilizes an orthogonal projection strategy to map 3D pedestrian
point clouds onto 2D planes, accurately reflecting real-world sizes and enhancing discriminative
capability.

The contributions in this chapter can be summarized as follows:

• I first attempt to develop a gait recognition system using 3D LiDAR that is robust to variations
in walking direction and the measurement distance from the sensor.

• To enhance identification performance, I leverage the unique characteristics of 3D LiDAR, such
as its ability to capture 3D spatial and positional information, which are absent in conventional
cameras.

2.2 Related work

2.2.1 Gait Representation in RGB Cameras

Gait recognition approaches for RGB videos can be categorized into two types: model-based and
appearance-based methods. These categories depend on how the gait-related features are designed
for walking.
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Figure 2.1: Overview of the proposed identification model, utilizing the unique characteristics of 3D
LiDAR that are not found in regular RGB cameras. After estimating the walking direction of a
subject point cloud, the two viewpoint-invariant gait image sequence and gait speed sequences are
extracted and fed into the recognition network to identify an individual.

Model-based Methods

In model-based methods, first, the pose estimation algorithm is applied to model an articulated
body with geometric properties, such as the lengths of skeletons, stride, cadence, and joint angles
[4,67]. These approaches are generally immune to appearance changes because gait-related dynamics
representing the joint information of the human body are learned under different clothing conditions.
With the rapid development of human pose estimation methods, the recognition accuracy of model-
based approaches has considerably improved [34,35,69]. In particular, studies [34,87] have achieved
high recognition performance by adopting a 3D human representation [42] that includes not only
pose but also shape parameters. However, these approaches remain challenging because of their
heavy reliance on accurate key point estimation of image sequences, and sensitivity to occlusions,
which could lead to the loss of identity-related shape information.

Appearance-based Methods

Compared with model-based approaches, shape-related gait features from original videos are directly
used in appearance-based approaches. For example, a gait energy image (GEI) [17] is an appearance-
based approach in which a silhouette sequence of the gait cycle is averaged to represent spatio–
temporal information. Extended GEI-like modalities, such as frame difference frieze patterns [60],
gait flow patterns [31], and affine moment invariants [24], have been proposed. Furthermore, the
performance is improved by feeding GEIs into CNNs [61], and this approach has been used in
other studies as a baseline. However, these methods compress time-series information into a single
frame, which leads to a loss of opportunity for applying gait dynamics in temporal changes. In
contrast, silhouette images, which describe body states in binary, have become popular in general gait
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recognition tasks as input representation because of their effectiveness in recognition performance
and low computational cost. For example, Chao et al. [9] achieved promising results by integrating
gait silhouettes as a set, and [13] extracted spatio–temporal features from each body part. In
contrast, Fan et al. [39] proposed a global–local convolution approach to address the neglect of local
region details in gait frames, and a subsequent version [38] designed a cross-domain evaluation to
synthesize both segmentation and recognition networks. Auto-encoders that disentangle appearance
into style and pose features have been proposed to address gait-irrelevant variables (e.g., clothing
and carrying) in RGB images [86]. The separation performance was further improved by augmenting
the training data through adversarial generation [82]. I focused on the appearance-based approach
assuming that inferring accurate key point locations remains challenging for gait recognition due to
the sparseness and incompleteness in pedestrian point clouds captured from general LiDAR sensors,
despite studies on LiDAR-based pose estimation [33].

2.2.2 Gait Recognition using Range Sensors

Compared with RGB cameras, few studies based on range-based sensors have been conducted for gait
recognition. Kozlow et al. [30] classified the gait types of individuals using RGB-D cameras by using
a 3D skeleton model with Bayesian networks, whereas Sadeghzadehyazdi et al. [51] applied flash
LiDAR sensors with both 2D and 3D skeleton models. In studies utilizing LiDAR sensors, Benedek
et al. proposed GEI-based methods [5, 6, 16] for re-identifying individuals within a short range and
a limited time frame. However, this method cannot satisfactorily extract dynamic features from
gait frames, which are critical for discriminating individuals. To address this problem, I proposed
a method [79] for exploring temporal gait changes using LSTMs [21]. This study exploited depth
representation in a spherical projection, which has been used in several LiDAR-related tasks for its
processing efficiency [47,48]. However, this method exhibits degraded recognition performance when
the walking directions and distances measured from LiDAR sensors are not constant, which limits
the flexibility of the model in real-world scenarios with complex confounding conditions.

2.3 Datasets

2.3.1 Data Collection

In this section, I describe the dataset used in subsequent experiments to verify the effectiveness of
the proposed model. The dataset was captured using a 32-beam LiDAR scanner (Velodyne HDL-
32E), which generates horizontal 360◦ range images. It consists of point cloud sequences from 31
individuals, including 28 men and 2 women. Data collection took place in the summer of 2020 at the
West 2 building on the Kyushu University campus, with the LiDAR sensor operating at 10 frames
per second (FPS).
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During the data collection, participants were instructed to walk naturally along a circular path
with a radius of 5 meters. The center of the circle was positioned 8.5 meters away from the sensor, as
illustrated in Fig. 2.2a. As a result, the dataset captures variations in 360◦ walking directions and
distances ranging from 3.5 to 13.5 meters. Compared to the dataset used in previous studies [79], this
dataset introduces simultaneous changes in gait direction and data sparsity across frames, making
it particularly challenging for recognition tasks.

2.3.2 Preprocessing

To evaluate the robustness of the proposed model to variations in walking direction and measurement
distance, I constructed four datasets by segmenting the gait sequence data described above, as
illustrated in Fig. 2.2b. Each dataset differs in terms of viewing angles and measurement distances.
Let Pt be the subject point set for the time step t, extracted by background subtraction processing:

Pt = {pt,1, pt,2, ..., pt,N}, (2.1)

where N is the total number of points for each subject, and each point pt,n ∈ R3 indicates its
orthogonal coordinates (pt,n,x, pt,n,y, pt,n,z). Given a subject point cloud extracted, I define the
center of gravity for a subject, ct = (ct,x, ct,y, ct,z), as follows:

ct =
1

N

N∑
n=1

pt,n, (2.2)

where ct,z was set to 0 to simplify the distance calculation. Given a subject central point ct, the
distance from the sensor position o to a subject dt can be calculated as follows:

dt = ∥ct − o∥2, (2.3)

Finally, the extracted time-series gait data were divided into four subsets according to the calculated
distance dt: datasets 1, 2, 3, and 4 containing gait sequences with ranges of 3.5 − 6 m, 6 − 8.5 m,
8.5− 11 m, and 11− 13.5 m, respectively.

2.4 Method
In this section, I present a pipeline for the proposed gait recognition model, which consists of
three components: gait direction transformation, input generation, and a recognition network. In
particular, to enhance the robustness of changes in the walking direction and the distance measured
from a sensor, I take advantage of 3D LiDAR, which is not included in normal RGB cameras.
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(a) Overview of data collection

(b) Three-dimensional point cloud visualization

Figure 2.2: Data acquisition environment. The subjects walked along a circular line with a radius
of 5 m, the center of which was 8.5 m away from the sensor. To evaluate the robustness of this
approach, the gait data extracted through background subtraction were divided into four datasets
according to the distance measured dt.
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2.4.1 Gait Direction Transformation

I first describe how to estimate the walking direction of a pedestrian and transform the subject point
cloud into a new subject point cloud heading in a constant direction. In other words, the walking
direction of a subject point set is transformed into the direction toward the −y-axis and generated
into left-side view gait images from the yz coordinate plane. First, the gait directional angle for a
time step t can be calculated from the subject’s central points before and after a time step t:

θt = arctan ct+1,y − ct−1,y

ct+1,x − ct−1,x
(2.4)

Given a directional angle θt, a subject point cloud transformed P̂t = {p̂t,1, p̂t,2, ..., p̂t,N} is obtained
by rotating the original subject point cloud Pt around ct as the z-axis.

p̂t,n = Rz(−θt − π/2) · (pt,n − ct), (2.5)

where Rz represents the rotation matrix around the z-axis as follows:

Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (2.6)

The case of generating a back-view gait image follows the same procedure, except that the rotation
matrix Rz(−θt − π/2) is replaced with Rz(−θt − π).

2.4.2 Input Generation

In the next step, I describe how to generate the input data, which consist of a left-side view and
back-view gait image sequences, and the gait speed sequences from the pedestrian point cloud
transformed above for input into a recognition network. The gait image it ∈ RV×H×1 is generated
from the pedestrian heading along the −y-axis:

it = fimg

(
P̂t

)
, (2.7)

where fimg(·) : RN×3 → RV×H×1 extracts a gait image representing the depth information of
a pedestrian, as shown in Fig. 2.3. Here, the depth value and the size of the height channel are
determined as V (= lz/lz-res)×H(= ly/ly-res) pixels, where lz, ly, lz-res, and ly-res are the height of the
z-axis, the width of the y-axis, the vertical resolution of the image, and the horizontal resolution of
the image, respectively. As the criteria by which each pixel value of the depth channel is determined,
the value is set to 0 when none of the points correspond to the pixel. Otherwise, it is set to the largest
x-coordinate value in the candidate set {p̂t,1, p̂t,2, ..., p̂t,Ñ} ⊂ P̂t, which are the points corresponding
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to the pixels in (v, h). In addition, for a clear distinction between a pedestrian and a background,
the constant lx/2 is added to the pixel value it,v,h corresponding to

it,v,h =


max

ñ∈{1,...,Ñ}
(P̂t,x) +

lx
2 (∃p̂t,ñ)

0 (otherwise)
(2.8)

Here, the candidate point p̂t,ñ should satisfy the following formulation:

p̂t,ñ = {p̂t,ñ ∈ P̂t | (v = ṽ) ∧ (h = h̃)}, (2.9)

where ṽ and the h̃ are defined as follows:

ṽ =

⌊
1

lz-res
·
(
p̂t,ñ,z +

lz
2

)⌋
, (2.10)

h̃ =

⌊
1

ly-res
·
(
p̂t,ñ,y +

ly
2

)⌋
(2.11)

Thus, the gait image sequence I ∈ RT×V×H×1 with T frames is obtained:

I = (i1, . . . , iT ) (2.12)

As another input for the recognition network, the gait speed can be obtained from the pedestrian
central points before and after time step t and the rotation rate frps of the sensor:

vt =
frps
2
· ∥ct+1 − ct−1∥2 (2.13)

Based on the calculation above, we can obtain the gait speed sequence vgait ∈ RT with T frames:

vgait = (v1, . . . , vT ) (2.14)

Finally, we can obtain the left-side view gait image sequence Ileft-side, the back-viewed gait image
sequence Iback, and the gait speed sequence vgait for the proposed recognition network. In this study,
lz, ly, lz-res, ly-res, T , and frps are set as 2.4 m, 1.6 m, 0.06 m, 0.01 m, 10, and 10 Hz, respectively.

2.4.3 Recognition Network

In this section, I describe the recognition network designed to learn the discriminative information
from the inputs generated in the previous step. The overall architecture, which consists of four
key components-density adaptive encoding (DAE), temporal feature aggregating (TFA), positional
feature concatenating (PFC), and viewpoint-informed feature aggregating (VFA)-is illustrated in
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(a) Left-side view

(b) Back view

Figure 2.3: Example of a generated gait image sequence, which is one of the inputs of the recognition
network. The point cloud of the subject is sparse when the target is at a long distance.
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Figure 2.4: The overall architecture of the proposed recognition network. The gait image and speed
sequence are fed into the network as inputs to learn the spatial-temporal and positional features and
improve the discriminative capability of the gait recognition.

Fig. 2.4.

Density Adaptive Encoding

A high-resolution image, transformed from the point set of a subject, is expected to capture fine-
grained patterns of the gait. However, such images lack the capability to recognize the entire human
body in sparse data. Consequently, spatial features learned from dense data captured at short
distances may not generalize well to long distances, as point sets typically exhibit non-uniform
density at varying distances. To address this limitation, I designed a module called density adaptive
encoding (DAE). This module leverages low-resolution representations, which are potentially more
robust to sparse data and better suited for recognizing coarse-grained patterns, enabling the learning
of multi-scale features by combining information extracted from different resolutions.

First, the double-reduced-resolution image sequence Ilow-res ∈ RT×V /2×H/2×1 is obtained by
feeding a gait image sequence I into the max pooling layer:

Ilow-res = Maxpool2D(I) (2.15)

Then, Ilow-res is upsampled to meet the height and width dimensions of I:

Îlow-res = Upsampling2D(Ilow-res) (2.16)

Next, two gait image sequences with different resolutions, I and Îlow-res, are fed into the 2-D convo-
lution network module Conv2D(·), which shares the weights and kernel optimizations, and obtains
the spatial features, F,Flow-res ∈ RT×V /2×H/2×16, respectively. Finally, F and Flow-res are combined
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into one feature sequence F̂ using the spatial feature fusion (SFF) operator as follows:

F̂ =
1

2
· (Conv2D(I) ⊕ Conv2D(Îlow-res)), (2.17)

where ⊕ represents an element-wise addition.

Temporal Feature Aggregating

The Temporal Feature Aggregating (TFA) module is composed of a convolutional LSTM (Con-
vLSTM) network [59], which is an extension of LSTM [21] and is responsible for modeling the
spatial-temporal representations of the gait, and a multi-layer perceptron (MLP) used to aggregate
the temporal features of F̂. ConvLSTM is expected to outperform LSTM-based approaches because
it captures spatio-temporal correlations simultaneously. The spatial-temporal feature f̂aggr ∈ R128

can be extracted by the TFA module from F̂ as follows:

f̂aggr = TFA(F̂) (2.18)

Positional Feature Concatenating

The Positional Feature Concatenating (PFC) module takes advantage of the walking speed informa-
tion, which can be one of the invariant attributes for changes in distance measured from 3D LiDAR.
As shown in Fig. 2.4, the PFC takes the average of all frames T in a re-weighted gait speed sequence
vgait, and the extracted gait speed feature fspeed ∈ R is concatenated into f̂aggr as follows:

f̂ re
aggr = Concat(f̂aggr, fspeed) (2.19)

Viewpoint-informed Feature Aggregating

The Viewpoint-informed Feature Aggregating (VFA) module is designed to extract more discrimi-
native features by leveraging two viewpoints: the left-side view and back view. As illustrated in Fig.
2.5, this module aggregates the outputs of two networks, fleft-side, fback ∈ RN , which are pre-trained
from two different viewpoints as follows:

fgait = Avgpooling1D(fleft-side, fback), (2.20)

where N donates the number of subjects used during training. The one-dimensional average pooling
operator is adopted for effectively aggregating the two feature vectors, inspired by studies in 3D
classification [25,66].
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Figure 2.5: Detailed structure of VFA module, which aggregates the gait features of the recognition
networks pre-trained from two different viewpoints: the left-side and back views.

2.5 Experiments
In this section, I describe the extensive experiments conducted on the point cloud gait datasets,
which include variations in gait direction and measurement distance from the sensor. The results
demonstrate the robustness of the proposed method to these changes. The dataset and training
process are detailed first. Next, an ablation study is performed to verify the effectiveness of each
component in the proposed model. Finally, the performance of the proposed method is compared
against that of previous approaches.

2.5.1 Implementation Details

Four point cloud gait datasets with varying gait directions and measurement distances were used in
this experiment. Each dataset contains data from 31 subjects, with each subject contributing 210
sequences. For training the networks, each dataset was divided into training, validation, and test
sets, consisting of 140, 35, and 35 sequences, respectively. The first 16 subjects were grouped for
training, while the remaining 15 subjects were used for testing.

During the training phase, all four training and validation sets from the first 16 subjects were
utilized. The training data comprisedf 16×4×140 = 8960 LiDAR gait sequences, while the validation
data consisted of 16 × 4 × 35 = 2240 LiDAR gait sequences. For optimization, Categorical Cross-
Entropy was employed to train the network without incorporating metric learning. Furthermore, the
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networks were trained using backpropagation with the RMSProp optimizer, a learning rate of 0.001,
and a training batch size of 20 per subject. To prevent overfitting, I applied early stopping with a
patience parameter of 20 [8,84]. During the testing phase, the three training sets of the 15 subjects
not used in the training phase were treated as gallery data. Each test set from the 15 subjects was
then used as probe data, resulting in four test patterns. For inference, the network identified each
subject using the nearest neighbor algorithm (Rank 1), which computed cosine similarity between
the gallery and probe data.

2.5.2 Ablation Study

The quantitative results of the ablation study are presented in Tab. 2.1. The ablation study was
conducted on the collected dataset to verify the effectiveness of each component by progressively
adding the proposed modules individually. As shown in Tab. 2.1, identification accuracy was gen-
erally higher when the probe set included gait patterns, such as walking direction and measurement
distance, that matched those in the gallery set, compared to when they did not. Comparing the
results within the range of 11–13 m, I achieved a better performance by gradually adding the pro-
posed modules. Especially, it is worth noting that the overall accuracy was greatly improved when
applying the proposed VFA module. These results indicate that the proposed approach is effective
and robust for recognizing gait features in sparse data by leveraging spatial representations of two
different resolutions, the walking speed information, and two invariant viewpoints. In the results
with the PFC module, accuracies were observed to decrease for all cases except for the highly sparse
pedestrian data within the range of 11–13 m. One possible reason is that the walking speed infor-
mation of pedestrians in the PFC module may not generalize well when learning gait features across
the entire range from the sensor.

2.5.3 Comparison with Related Prior Methods

The quantitative results comparing the proposed network with previous work are presented in Tab.
2.1. In these results, the identification performance of the proposed network is compared with that
of GEINet [61] and the previous method, LSTMNet [79]. GEINet, which uses a single GEI image as
input to a convolutional neural network, is one of the most successful gait recognition methods and
shares the same architecture as LGEI [6]. In contrast, LSTMNet is an LSTM-based network that
identifies individuals using a depth image sequence acquired from a 3D LiDAR sensor. For both
GEINet and LSTMNet, the left-side view gait image sequence, Ileft-side, was used as input. In the
case of GEINet, Ileft-side was transformed into a GEI image before being processed. Compared to
GEINet and LSTMNet, the proposed network demonstrated significantly better performance when
all components were applied. Notably, the proposed network showed considerable improvements in
discriminative performance for individual recognition at long distances. The results of the quantita-
tive evaluations confirm that the proposed model, which leverages the unique characteristics of 3D
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LiDAR sensors, enhances discriminative capability for gait recognition.

2.6 Conclusion
I propose a gait recognition method using a 3D LiDAR sensor to improve robustness against vari-
ations in measurement distance and walking direction. To enhance discrimination performance, I
introduce a multi-view projection-based network that utilizes gait image sequences from two in-
variant views (left-side and back view) through an orthogonal projection strategy. To generalize
gait features under variations in data sparsity, I propose a multi-scale spatial encoding and walking
speed encoding approach. I also constructed a dataset for the gait recognition task using 3D LiDAR
data, incorporating variations in range and gait direction. Finally, experiments conducted on the
collected dataset demonstrate the effectiveness of the proposed method.



Chapter 3

Identification Modeling through
Adaptive Learning

3.1 Introduction
In the previous chapter, I introduced a gait-based identification model using a 3D LiDAR sensor
to minimize the impact of variations unrelated to gait features in two key aspects: viewing angles
and measurement distances. These conditions are well-known as primary challenges typically en-
countered in LiDAR-related tasks. Specifically, I employed a two-scale spatial resolution approach
to learn from varying point cloud densities projected onto 2D grids representing depth information.
Moreover, the model leverages gait features from two invariant viewpoints (i.e., left-side and back
views) across the gait sequence to enhance the consistency of walking dynamics, which cannot be
captured by RGB cameras. The experimental results demonstrated superior performance compared
to existing methods, highlighting the potential for applying 3D LiDAR-based gait recognition in
such environments.

Despite these valuable results, however, there are still potential challenges to consider. First, the
gait features from two viewpoints in this model are learned separately, which could result in issues
with inference speed and optimization during training. In particular, the impact of self-occlusion
on gait shapes varies depending on the emitting direction of the LiDAR sensor. Second, there is a
need to develop a new dataset for evaluating identification performance. The dataset used in the
experiments from the previous chapter includes simultaneous variations in measurement distance and
walking direction, making it necessary to conduct separate performance evaluations for cross-view
and cross-distance scenarios.

To address these issues, this chapter introduce an identification model that builds on a modified
version of the model presented in the previous chapter, as illustrated in Fig. 3.1. Specifically, I

23
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Figure 3.1: Overview of the proposed identification model using 3D LiDAR, which learns two
viewpoint-invariant gait shapes in varying point cloud densities using an attention-based approach.

propose an attention-based block to fuse gait features from multiple resolutions and viewpoints.
Unlike a typical self-attention mechanism that focuses on the interrelationships within a single
input feature, this block compares the statistics of two different features, biasing towards the more
informative one. I have extended this version based on the following three aspects: 1) Rather than
using pooling approaches [25, 66], I designed a novel attention block to fuse the two gait features
more effectively for both invariant viewpoint and spatial resolution in an end-to-end manner. 2) I
conducted an in-depth ablation study to evaluate the proposed modules, as well as the effectiveness of
orthogonal projection and depth information. 3) I compared the performance with existing methods
on the new dataset, which consists of combinations of cross-views and cross-distances, to achieve
deeper insights than previous study.

The contributions of this chapter are as follows:

1. I proposed a framework for gait recognition using 3D LiDAR sensor. This model is robust to
changes in viewing angles and measurement distances.

2. Performance of the proposed method is enhanced in three aspects, namely, point cloud pro-
jection, gait direction transformation, and recognition network, to learn viewpoint- and point
cloud density-independent gait features with contextual depth information.

3. Extensive experiments, including variances of both viewing angles and measurement distances,
conducted on the dataset revealed that the proposed method surpassed the recognition accu-
racy of prior studies.
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3.2 Related work

3.2.1 Attention Mechanism for Convolutional Neural Networks

The attention mechanism has been used in numerous tasks because of its ability to bias the allocation
of available processing resources toward the most informative components of an input signal [73].
Several studies have demonstrated its applicability to computer vision. For example, Wang et al. [74]
proposed a nonlocal operation that captures long-range dependencies in images or videos and can be
plugged into CNN-based architectures. Hu et al. [22] enhanced the representation power of CNNs
by focusing on channel relationships using a gating mechanism, whereas Woo et al. [75] inferred
attention maps related to both the channel and spatial features. In this study, a novel attention
block was designed by considering inter-channel dependencies to effectively fuse two gait features
extracted from convolutional encoders.

3.3 Method
In this section, I demonstrate a pipeline for the proposed gait recognition method that consists
of three steps: gait direction transformation, depth image generation, and recognition network.
Specifically, the gait direction transformation and depth image generation processes are slightly
refined versions of those in the previous chapter. To enhance immunity to changes in the walking
directions of subjects, I used LiDAR characteristics, such as gait shapes that are invariant to viewing
angles and are not captured by general RGB cameras.

3.3.1 Gait Direction Transformation

I first describe the gait direction transformation (GDT) process for estimating the walking direc-
tions of point cloud sequences. The gait directions are transformed into constant directions to
extract the two viewpoint-invariant gait features. For example, when generating gait images from
a left-side view, subject point sets are aligned with the −y′-axis in the new x′y′-plane of Cartesian
coordinates, to project these side gait shapes from the y′z′-plane, as depicted in Fig. 3.2. Let
Pt = {pt,1,pt,2, . . . ,pt,N} denote the point set of a subject at time step t, obtained using either
background subtraction or object tracking techniques. Here, N denotes the number of points for time
step t, which may vary across different frames. In addition, n represents an arbitrary single point
among N points. Each point pt,n ∈ R3 is represented in Cartesian coordinates (pt,n,x, pt,n,y, pt,n,z),
where the z-coordinate is a vertical directional value at the corresponding points. Given an extracted
point cloud of the subject, the center of mass ct = (ct,x, ct,y, ct,z) for the time step t is defined as
follows:

ct =
1

N

N∑
n=1

pt,n, (3.1)



CHAPTER 3. IDENTIFICATION MODELING THROUGH ADAPTIVE LEARNING 26

Figure 3.2: Overview of the gait direction transformation (GDT) process that generates two invariant
gait shapes from pedestrian point cloud sequences.

where ct,z is set to zero because only the walking direction on the xy-plane is considered. Sub-
sequently, the directional angle θgait for a given point cloud sequence P in the xy-plane can be
calculated from its starting and ending central points. This approach avoids instability of the cen-
tral points caused by a variable number of points in the gait sequence. All walks over an entire
frame can be approximated as a straight line:

θgait = arctan(cT,y − c0,y, cT,x − c0,x), (3.2)

where arctan(·, ·) calculates the angle between a pedestrian and a positive x-axis in the Euclidean
plane. Unlike the GDT process in the previous version, where the gait angle θgait for each frame t is
calculated using the immediately preceding and succeeding frames, this updated process calculates
θgait based on T and 0 across the entire gait sequence. This adjustment aims to reduce errors
in sparse pedestrian point clouds measured at long ranges. Given a directional angle θgait, the
transformed point cloud sequence P̂ = {P̂0, P̂1, . . . , P̂T } is obtained by rotating the original gait
sequence P around the central points using the z-axis in the case of a left-side view:

p̂t,n = Rz(−θgait −
π

2
) · (pt,n − ct), (3.3)

where Rz represents a rotation matrix around the z-axis. The case of generating back-view gait
images follows the above procedure, except that rotation matrix Rz(−θgait−π/2) and the y′z′-plane
are replaced with Rz(−θgait − π) and the y′′z′′-plane, respectively, as shown in Fig. 3.2. The point
clouds from the left-side and back views are standardized to be represented as depth images in the
same coordinate direction by varying the values of the rotation matrix Rz(·).

3.3.2 Depth Image Generation

Input data are generated from the transformed pedestrian point cloud P̂ to feed a subsequent recog-
nition network: depth image sequences of the left-side and back views. In this study, the gait speed
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(a) Spherical Projection

(b) Orthographic Projection

Figure 3.3: Comparison between the prior spherical and proposed orthographic projection ap-
proaches, representing gait shapes with depth information.
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sequence is not used for identification due to challenges in generalizing it during network training.
Additionally, unlike the previous version, a constant is introduced to normalize the height of pedes-
trians in the gait videos. This approach represents point clouds as gait images using orthographic
projection, which allows for a more intuitive representation of walking shapes and texture informa-
tion from fixed viewing angles. This projection manner differs from the approach used in [79], in
which point clouds are assigned to an angular grid using spherical projection, as displayed in Fig.
3.3. The proposed gait images are rendered from the subject point cloud P̂t ∈ RN×3 heading along
the −y-axis and −x-axis, which correspond to the left-side and back views, respectively. The gait
image it of each time step t is determined as V (= lz/Rz)×H(= ly/Ry) grid, where lz, ly, Rz, and
Ry are a height for the z-axis, width for the y-axis, vertical resolution, and horizontal resolution,
respectively, for the generated images. Compared with the prior approach in [79], which bijectively
maps the pedestrian point cloud to a 2D spherical grid through one-to-one correspondence, the
proposed method assigns this point cloud to a physical space divided into pixel-level regions. When
more than one point exists in the same pixel, the largest x-coordinate value, representing the nearest
point based on the direction −x-axis in which gait shapes are observed, is the depth value for that
corresponding pixel. If no points exist within a pixel, its depth value is set to 0. This method for
determining depth values is similar to the Z-buffer algorithm, which compares the depths of surfaces
at each pixel position on the projection plane, except that it uses the smallest depth values. For
a clear distinction between a pedestrian and the background, a constant ly/2 is added to all pixel
values where one or more points exist. Here, the pixel position iv,h in the proposed depth images
for an arbitrary point p̂t,n is defined as follows:

v =

⌊
1

Rz
· (p̂t,n,z − min

n∈{1,...,N}
(p̂t=0,n,z) + lz−const)

⌋
, (3.4)

h =

⌊
1

Ry
· (p̂t,n,y +

ly
2
)

⌋
, (3.5)

where the criterion for the vertical axis in the generated gait images is determined by considering the
lowest z-coordinate value of the point cloud sequence p̂t=0,n,z at time step t = 0, which represents
the floor in walking situations, with an additional constant lz−const, to standardize gait shapes
projected onto the image sequences. Compared with typical gait recognition tasks that involve
resizing a pedestrian segmented from RGB images to a standard height via linear interpolation, the
proposed approach directly projects a subject’s point cloud onto the image. Therefore, the proposed
gait images require limited pre-processing than general RGB images and provide richer size-related
information. Consequently, the gait image sequence I = (i1, ..., iT ) ∈ RT×V×H for T frames is
obtained. We used depth images projected from two fixed viewpoints for the subsequent recognition
network: gait image sequences of left-side view Iside and back view Iback. Although Iside provides
the richest dynamic gait information, Iback is more practical than other viewing angles because
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people tend to walk away from visual sensors and prefer not to show their faces to visual sensors.
The proposed depth images can represent gait-related features more effectively than the silhouettes
and RGB images typically used in gait recognition tasks because these images convey geometric
information more clearly than other images. The depth values for each gait image sequence are
normalized by dividing them by a constant ly/2. This normalization step can scale the depth values
within a specific range and facilitate the training process of the proposed network. In this study, lz,
ly, Rz, Ry, V , H, lz−const, and T are set to 2.6 m, 1.8 m, 0.04 m, 0.04 m, 64, 44, 0.4 m, and 15,
respectively. Here, V and H are selected based on previous gait recognition studies and are used
consistently throughout the experiments.

3.3.3 Recognition Network

In this section, I describe a recognition network for learning the discriminative gait features from
the aforementioned inputs. The architecture in Fig. 3.4a consists of a viewpoint-adaptive encoding
(VE), which includes two spatial encoder units and one attention-based two-feature fusing (ATFF)
block, along with additional layers. Each spatial encoder unit in the VE module is formed of two
components, namely, resolution-adaptive encoding (RE) and temporal encoding (TE), as displayed
in Fig. 3.4b. In particular, the ATFF block is inserted into the ends of the VE and RE to flexibly
aggregate the two features under various confounding conditions.

Viewpoint-Adaptive Encoding

In the viewpoint-adaptive encoding (VE) module, two-feature maps are fused from different view-
points: the left-side and back views to obtain the discriminative gait feature. Specifically, the gait
features fside and fback are extracted from the same spatial encoder unit and combined into one
feature vector through the ATFF block. Unlike the previous version of this study [1], which aggre-
gates outputs from two units pre-trained for different viewpoints, this feature fusion is achieved in
an end-to-end manner. Subsequently, the final linear layer in the proposed final network is used
as a gait feature vector fgait ∈ RN , where N is the number of trained subjects. During training, I
adopt cross-entropy loss, which is common in classification tasks, and calculate the gap between a
predictive distribution and the corresponding ground-truth distribution. In contrast, during test-
ing, I use the nearest neighbor algorithm (i.e., Rank-1 accuracy) to compute the cosine similarity
between galleries and probes for subsequent evaluations.

Resolution-Adaptive Encoding

The high-resolution images represent fine-grained gait patterns. However, when the input data are
captured at a long distance, these images do not have the ability to recognize detailed spatial features
because the human shape is generally sparse, as displayed in Fig. 3.5. Gait-related spatial features
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(a) Overall recognition network

(b) Spatial encoder unit

Figure 3.4: Architecture of (a) overall recognition network and (b) spatial encoder unit. (a) The over-
all recognition network consists of a viewpoint-adaptive encoding (VE) module, two fully-connected
layers, a ReLU activation function, and batch normalization. Specifically, the VE module includes
two spatial encoder units to process gait image sequences of both the left-side and back views. (b)
The spatial encoder unit is equipped with a resolution-adaptive encoding (VE) module and a tem-
poral encoding (TE) module. This unit extracts the gait feature for a single viewpoint.
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Figure 3.5: Examples with various measurement distances, with different sparsity of proposed depth
images.

learned from dense data acquired at short distances may not generalize to long distances, as the point
clouds captured from LiDAR sensors typically have non-uniform densities at various distances. To
alleviate this problem, I designed an RE module that leverages not only the original resolution but
also the low resolution. This method is robust to sparse data and exhibits an enhanced recognition
of coarse-grained patterns. Furthermore, this module combines the two-scale features extracted from
the two resolutions. First, the double-reduced-resolution image sequence Ilow-res ∈ RT×V /2×H/2 is
obtained by feeding a gait image sequence I ∈ RT×V×H into a max pooling layer as follows:

Ilow-res = Maxpool2D(I) (3.6)

Ilow-res is up-sampled to match the height and width dimensions of the original image I as follows:

Îlow-res = Upsampling2D(Ilow-res) (3.7)

Subsequently, two gait image sequences are fed into the CNN-based extractor. This extractor
consists of two 2D convolutional layers and one 2D max-pooling layer to extract two spatial feature
maps with two different resolutions from a single viewpoint. In this extractor, the kernels are shared
across both two resolutions and two viewpoints to reduce the computational cost and to learn filters
with the same weights for the subsequent ATFF block in the RE module. The detailed configurations
of each layer are listed in Table 3.1.



CHAPTER 3. IDENTIFICATION MODELING THROUGH ADAPTIVE LEARNING 32

Table 3.1: Layer configuration for the spatial encoder unit.

Layer Input/Output Channels Kernel Size Stride/Padding Activation
2D Conv 1 1/32 5×5 1/0 ReLU
2D Conv 2 32/32 5×5 1/0 ReLU

2D Max Pooling - 2×2 2/0 -
2D ConvLSTM 32/64 3×3 1/0 -

Attention-Based Two Features Fusing

As displayed in Fig. 3.6, the ATFF blocks can adaptively recalibrate and aggregate two-feature
maps under changing conditions, especially in terms of resolutions and viewpoints. For instance,
high-resolution images represent distinct spatial features at short distances from LiDAR sensors,
whereas low-resolution images may be more effective at long distances, as displayed in Fig. 3.5.
Additionally, a more optimal viewpoint for capturing gait-related features could exist because self-
occlusions depend on the emitting angles of the lasers. Inspired by [22], I designed a novel attention-
based block that fuses two 2D feature maps that represent distinct characteristics, biasing more
useful weights under varying scenarios. Unlike the typical self-attention mechanism that explores
the inter-relationships within a single input, this block operates channel-wise comparisons between
two-feature maps. Thus, in this approach, the scores for both inputs are compared and fused into a
single feature. Given that inputs fed into the ATFF module are denoted as f1 ∈ RT×Cattn×Hattn×Wattn

and f2 ∈ RT×Cattn×Hattn×Wattn , the global spatial information is compressed using global average
pooling in each channel to fully exploit the contextual information. Here, Cattn, Hattn, and Wattn

represent the channel, height, and width of these 2D spatial features, respectively. Compared with
the original structure [22], my strategy incorporates an additional temporal context T into the global
average pooling calculation to capture the gait-related consistency in sequences. Formally, the vector
z1 ∈ Rcattn is calculated with the spatio–temporal dimensions T×Hattn×Wattn of f1 for each channel
by the following equation:

z1,cattn =
1

T ×Hattn ×Wattn

T∑
i=1

Hattn∑
j=1

Wattn∑
k=1

f1,cattn(i, j, k). (3.8)

Subsequently, this operation is followed with a second operation that fully captures channel-wise
dependencies and expresses probabilistic values to determine which of the two features f1 and f2
is more critical. First, the statistical vector s1 ∈ RCattn of f1 is obtained by forming a bottleneck
using a dimensionality reduction layer with reduction ratio r and sigmoid activation. Furthermore,
another statistic s2 ∈ RCattn of f2 is calculated with s1 as follows:

s2 = 1− s1 = 1− σ(W2δ(W1z1)), (3.9)
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Figure 3.6: Structure of the attention-based two features fusing (ATFF) block, which takes two
different feature maps as input and recalibrates their scores to fuse them into a single feature.

where σ(·) and δ(·) refer to the sigmoid and ReLU functions with W1 ∈ R
Cattn

r ×Cattn and W2 ∈
RCattn×Cattn

r . Here, the sum of s1,cattn and s2,cattn for each channel is equal to 1 so that each statistic
is standardized. This subtraction operation is designed based on the insight that the channel-wise
scores of one input are determined simultaneously when the scores of another input are computed.
Finally, the final output ftotal ∈ RT×Cattn×Hattn×Wattn of this ATFF block can be obtained by adding
two outputs f̂1 and f̂2 ∈ RT×Cattn×Hattn×Wattn , which are rescaled from the inputs f1 and f2 using
the activation s1 and s2, respectively:

ftotal = f̂1 ⊕ f̂2 = (s1 ∗ f1)⊕ (s2 ∗ f2), (3.10)

where ⊕ and ∗ represent element-wise adding and channel-wise multiplication between a scalar scattn

and a feature map fcattn , respectively. These ATFF blocks are inserted at the endpoints of the RE
and VE modules in the proposed network. In the VE module, the T dimension of the input feature
is set to 1.

Temporal Encoding

The TE block aggregates the temporal information of the feature maps extracted from the previous
RE module. Specifically, this module consists of a single 2D convolutional LSTM (ConvLSTM) layer
[59], which is an extension of LSTMs [21] and is used for modeling the spatio–temporal representation
of gait features, equipped with 2D max pooling and batch normalization layers [23]. The hyper-
parameters of this layer are listed in Table 3.1. Compared with [79], ConvLSTM can outperform
1D-LSTM layers because it captures spatio–temporal correlations simultaneously. In Addition, the



CHAPTER 3. IDENTIFICATION MODELING THROUGH ADAPTIVE LEARNING 34

kernels in this TE module are shared across two viewpoints for the subsequent ATFF block in the
VE module.

3.4 Datasets
In this section, I demonstrate the collected dataset to evaluating the effectiveness of the proposed
model. To verify the robustness to changes in viewing angles and distances measured from a sensor,
I collected a gait database using a 32-beam LiDAR scanner, Velodyne VLP-32C, which creates 3D
range images with a horizontal 360◦ field of view using 32 lasers for vertical resolution. Compared
to the HDL-32C used in the previous chapter, its vertical lasers are more concentrated toward the
center, enabling it to capture objects more densely at the same measurement range. This data
consists of gait sequences containing 30 subjects in a 3D point cloud format. Furthermore, in this
dataset, the sampling rate was set to 10 Hz and it had 15 frames. During data collection, the
LiDAR sensor was mounted on a tripod at a height of 1.2 m. I then requested each subject to walk
as usual along four straight lines that evenly divided a circle, located at distances of 10 and 20 m
away from the sensor, as displayed in Fig. 3.7. I obtained gait data for each subject under eight
views (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 280◦, 315◦) and two distances (10 and 20 m) per subject.
For the subsequent experiments, the viewing angles are determined by the pedestrian’s walking
direction relative to the sensor-pedestrian vector, as shown in Fig. 3.5. Compared with other well-
known gait datasets [55,83] commonly used in gait recognition challenges, this combination not only
includes cross-view but also cross-distance conditions. In this dataset, 126-point cloud sequences
were obtained for each subject under a single condition. Therefore, the gait dataset contains 30 ×
8 × 2 × 126 = 60,480 sequences. During training and evaluation, I only used the pedestrian point
cloud sequences, which were extracted through background subtraction processing.

3.5 Experiments

3.5.1 Implementation Details

I conducted experiments based on the collected dataset. Essentially, the first 20 subjects were used
for training, and the remaining 10 subjects were used for testing with no overlap. Thus, the training
set contains 20 × 8 × 2 × 126 = 40,320 sequences for all experimental settings. In addition, I
standardized the input to a set of aligned images with a size of 64 × 44 in all recognition networks
to ensure a fair comparison with prior studies, as displayed in Fig. 3.8. For optimization, I used
the cross-entropy loss to train the networks. I adopted ADAM [26] optimizer for optimization. The
details for batch size, learning rate, and training iterations in all the experimental settings were 42,
1e-4, and 48k, respectively. The code for all experiments was implemented using Python in PyTorch
1.12, and performed on a single NVIDIA GeForce RTX 3090 GPU (approximately 10 hours to train).
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(a) Measurement distance: 10 m

(b) Measurement distance: 20 m

Figure 3.7: Data acquisition environment with two distances measured from a VLP-32C, which is
visualized in a 3D point cloud format.
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(a) Measurement distance: 10 m

(b) Measurement distance: 20 m

Figure 3.8: Visualization of input data for feeding into recognition networks with two distances
measured from a VLP-32C, which are generated through a combination of point cloud projection,
viewpoint, and modality.
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During testing, I used the penultimate feature to match the 10 subjects that were not used in the
training.

3.5.2 Method Comparison

To evaluate the contribution of each component to the overall performance, I investigated the ef-
fectiveness of the proposed method by examining it from three changeable perspectives: viewpoint,
point cloud projection, and recognition network. In the GDT, I investigated the extent to which
viewing angle-independent gait features, which cannot be directly obtained from RGB cameras,
contribute to individual recognition. Furthermore, I evaluated the proposed point cloud projec-
tion for input and compared it with the existing method (i.e., spherical projection) used in [79].
When applying the spherical projection, I normalized gait images to a size of 64 × 44 based on the
height of pedestrians segmented from the bijective 2D grids with bilinear interpolation, in which
pre-processing is commonly used in camera-based gait recognition tasks. In the recognition network
part, I compared the performance of the proposed network with three prior approaches [6, 61, 79].
Among these approaches, the LGEI-based technique [6] is the first gait analysis study using LiDAR
sensors. This network feeds the GEIs of a gait sequence into the CNN layers and performs person
re-identification. On the other hand, [61], called GEINet, is the most representative network that
uses GEIs in the gait recognition field, which structure is similar to that of [6]. In [79], gait image
sequences with depth information are input into CNN and LSTM layers to classify individuals. I
compared the proposed method with both Network 1 and 2 in [79], where the second architecture is
a modified version of the first method by supplementing a subtraction operation at the front of the
LSTMs.

3.5.3 Main Results

Table 3.2 presents a comparison between the proposed method and the prior approaches. The results
for all networks were obtained through experiments. In this experiment, I averaged all results across
seven views, excluding identical views. Furthermore, the robustness of the proposed method was
evaluated in various point cloud densities by varying the measurement distances between the galleries
and probes. This experimental setting is more challenging than the typical cross-view conditions.
In this experiment, the gallery and probe contained 10 × 1 × 7 × 42 = 2,940, and 10 × 1 × 1 × 84
= 840 sequences for each condition, respectively. In the proposed network with a single viewpoint,
I used only one spatial encoder unit in the VE module without the ATFF block.

First, in Table 3.2, I observed that networks using the proposed point cloud projection (Ortho.)
achieved higher average accuracies than the prior approach (Spher.). A possible reason for this
phenomenon is that the previous method requires linear interpolation processing to adjust the size
of pedestrians to the same height, which may exclude individuals’ unique spatial gait features,
such as stride or height of the body. Although the generated images are sparse at long distances,
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in the proposed projection, real-size gait shapes are used without pre-processing, such as linear
interpolation algorithms. I achieved improved recognition performance by using both the GDT and
the proposed projection (Ortho.) except for Network 1 [79]. A potential reason is that the lateral gait
shapes can capture dynamic gait information more clearly, such as swinging motions of the arms or
legs, compared with the original view from the sensors. On the other hand, when applying the prior
projection (Spher.) to the GDT process, I observed a performance decline in the networks that use
depth image sequences [79] [1]. This result indicates that the spherical projection method may lead
to increased distortion of the gait shapes when rotating pedestrian point clouds around the z-axis,
compared with the proposed projection. Furthermore, self-occlusions with LiDAR scanning can be
one of the potential causes of the performance decline in Network 1 [79] because they negatively affect
the depth values in gait images processed with the GDT. In the proposed network and the previous
version [1], the average accuracies of the back view exceed those of the side view. Based on this result,
the gait shapes captured from a back view, especially when depth information is included, could be
critical discriminative cues for recognition. In addition, I observed that the fixed viewpoint strategy
positively affected GEI-based networks [5, 61] in both the proposed and prior projection methods.
This result indicates that GEIs captured from the side-view show more significant changes in the
overall gait shapes than those from the original view. Finally, when comparing the accuracies across
all combinations, the proposed complete method achieved the highest discriminative capability by
using two viewpoints.

Table 3.3 presents the performance results for the recognition networks under the sole cross-view
condition. This experimental setting is identical to that in Table 3.3, except that the measurement
distances for both the gallery and probe are the same. Each average value in Table 3.3 represents a
combination of all eight cross-views and two distances. I observed that the results in Table 3.3 are
generally higher than those in Table 3.2 because this experiment evaluated only the robustness with
changes in the walking direction. In particular, among the accuracy results for all combinations,
the proposed method using two viewpoints achieved the second-highest accuracy, followed by the
previous model [1]. From these results, I observed that while the pooling method that combines two
gait features from independently trained units may achieve optimal performance under a cross-view
condition, the proposed attention method is more effective in scenarios where the point cloud density
changes.

3.5.4 Ablation Study

In this section, I report the ablation experiments on the collected dataset used in the compari-
son experiment to evaluate the effectiveness of the elements proposed in the proposed recognition
network.
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Table 3.2: Comparison with prior studies on the collected dataset under two conditions (%)

Distances Networks Modalities Projections Viewpoints Gallery All 8 Views (0 – 315◦)
Gallery Probe Sensor-view Side-view Back-view 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦ Mean

10 m 20 m

Benedek et al. [6] GEI
Spher. ✓ 27.3 32.0 42.5 28.6 26.1 33.1 36.9 29.6 32.0

✓ 41.6 51.8 46.4 25.4 40.6 42.7 51.1 41.9 42.7

Ortho. ✓ 58.3 57.4 48.0 55.8 55.0 43.1 46.6 49.2 51.7
✓ 52.7 58.3 63.3 65.0 64.6 55.0 50.2 56.8 58.2

Shiraga et al. [61] GEI
Spher. ✓ 21.4 29.4 43.5 34.9 22.5 25.4 41.8 24.8 30.5

✓ 24.2 37.0 31.2 41.3 23.8 34.8 35.4 30.2 32.2

Ortho. ✓ 44.4 44.4 32.1 41.7 35.6 36.6 33.5 41.2 38.7
✓ 52.9 50.5 65.6 62.4 53.2 47.9 59.2 47.3 54.9

Yamada et al. (Network 1) [79] Depth Seq.
Spher. ✓ 21.6 22.1 29.8 29.3 24.3 30.4 33.6 24.1 26.9

✓ 11.6 20.6 8.5 12.9 18.7 11.3 22.6 15.5 15.2

Ortho. ✓ 54.2 49.9 49.8 60.1 51.3 48.3 53.0 57.4 53.0
✓ 50.1 53.0 53.1 49.9 49.3 49.4 45.2 51.1 50.1

Yamada et al. (Network 2) [79] Depth Seq.
Spher. ✓ 17.7 36.8 32.1 37.6 23.0 33.7 29.3 29.3 30.0

✓ 12.3 13.1 17.1 15.6 10.7 9.8 10.0 16.0 13.1

Ortho. ✓ 37.3 47.1 32.5 51.1 44.5 41.3 33.2 49.6 42.1
✓ 51.8 50.5 58.8 53.1 54.1 51.4 53.2 45.4 52.3

Ahn et al. [1] Depth Seq. Spher. ✓ ✓ 52.3 67.9 55.6 69.4 66.9 62.1 56.2 54.9 60.7
Ortho. ✓ ✓ 73.8 77.4 81.4 83.3 81.8 74.5 89.1 74.3 79.5

Proposed Depth Seq.

Spher.

✓ 29.8 39.9 46.2 38.3 42.9 36.2 43.9 30.6 38.5
✓ 19.4 31.4 44.2 46.7 22.3 27.7 11.0 30.6 29.2

✓ 54.6 50.0 35.1 55.1 57.7 53.8 32.9 41.8 47.6
✓ ✓ 50.8 51.8 52.6 60.0 60.7 59.3 48.6 46.4 53.8

Ortho.

✓ 64.5 73.3 65.6 72.5 68.2 73.9 63.6 71.0 69.1
✓ 62.3 64.6 80.2 73.0 74.1 69.4 80.8 64.5 71.1

✓ 77.5 72.7 69.1 78.5 81.7 78.7 71.4 68.9 74.8
✓ ✓ 69.3 82.9 90.0 85.4 84.9 82.4 80.4 78.2 81.7

20 m 10 m

Benedek et al. [5] GEI
Spher. ✓ 26.2 30.1 19.2 31.7 22.0 28.3 32.5 29.6 27.5

✓ 50.5 47.7 41.4 36.0 40.5 37.5 40.8 50.4 43.1

Ortho. ✓ 57.4 53.5 52.0 52.0 56.4 54.9 50.4 49.5 53.3
✓ 52.1 53.5 56.4 58.8 58.6 58.5 57.0 52.4 55.9

Shiraga et al. [61] GEI
Spher. ✓ 28.3 32.7 26.2 39.3 26.2 32.1 20.4 42.9 31.0

✓ 41.4 39.3 40.6 47.6 30.0 32.0 28.8 33.5 36.7

Ortho. ✓ 28.0 43.5 28.6 40.4 31.4 45.5 47.4 39.6 38.0
✓ 52.9 60.8 57.3 68.9 67.1 72.5 52.9 58.1 61.3

Yamada et al. (Network 1) [79] Depth Seq.
Spher. ✓ 29.3 33.0 24.1 35.4 29.4 32.3 28.7 31.4 30.4

✓ 17.7 17.6 22.6 21.4 18.3 18.2 14.1 8.6 17.3

Ortho. ✓ 52.6 64.3 49.3 53.7 53.5 65.1 46.0 54.3 54.8
✓ 49.5 54.1 41.4 52.1 56.4 53.9 45.7 50.7 50.5

Yamada et al. (Network 2) [79] Depth Seq.
Spher. ✓ 30.5 43.8 40.4 37.5 22.9 38.8 41.2 39.4 36.8

✓ 10.1 17.5 13.2 15.8 12.9 13.3 17.3 13.7 14.2

Ortho. ✓ 45.6 58.6 49.9 48.6 38.5 59.3 52.5 54.3 50.9
✓ 53.0 60.5 52.6 56.7 50.0 62.9 51.6 55.6 55.4

Ahn et al. [1] Depth Seq. Spher. ✓ ✓ 58.8 62.4 65.8 74.5 72.0 69.6 72.5 69.3 68.1
Ortho. ✓ ✓ 80.7 81.0 70.1 71.7 84.2 78.3 78.6 85.5 78.8

Proposed Depth Seq.

Spher.

✓ 39.6 43.9 35.4 52.1 47.1 39.8 43.6 49.9 43.9
✓ 25.5 48.5 34.1 29.6 27.5 21.7 21.6 22.0 28.8

✓ 42.4 41.8 44.4 56.6 54.6 48.0 49.3 54.5 49.0
✓ ✓ 52.1 56.7 59.5 63.0 65.7 60.5 59.5 57.3 59.3

Ortho.

✓ 72.6 79.6 72.1 79.1 66.9 76.6 73.8 80.5 75.2
✓ 72.0 73.6 76.7 77.3 83.1 75.4 72.4 75.5 75.7

✓ 86.3 76.6 71.3 79.6 88.8 81.7 75.4 85.7 80.7
✓ ✓ 85.5 81.6 76.8 82.4 88.2 81.2 68.6 81.8 80.8
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Table 3.3: Comparison with prior studies on the collected dataset under the sole cross-view condition
(%)

Networks Modalities Projections Viewpoints Mean
Sensor-view Side-view Back-view

Benedek et al. [5] GEI
Spher. ✓ 62.6

✓ 71.7

Ortho. ✓ 71.9
✓ 76.5

Shiraga et al. [61] GEI
Spher. ✓ 70.9

✓ 71.1

Ortho. ✓ 71.9
✓ 76.5

Yamada et al. (Network 1) [79] Depth Seq.
Spher. ✓ 53.4

✓ 49.8

Ortho. ✓ 64.1
✓ 62.1

Yamada et al. (Network 2) [79] Depth Seq.
Spher. ✓ 44.1

✓ 54.0

Ortho. ✓ 54.9
✓ 61.2

Ahn et al. [1] Depth Seq. Spher. ✓ ✓ 93.4
Ortho. ✓ ✓ 94.8

Proposed Depth Seq.

Spher.

✓ 89.6
✓ 54.6

✓ 83.4
✓ ✓ 89.9

Ortho.

✓ 89.7
✓ 86.1

✓ 91.0
✓ ✓ 93.8
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Table 3.4: Effect of input modalities and temporal aggregating manners (%)

Modalities Temporal Encoding (TE) Mean
Silhouette Seq. Depth Seq. 1D-LSTM ConvLSTM [59]

✓ hidden size = 256 49.2
✓ hidden size = 512 58.4
✓ hidden size = 1024 57.6
✓ kernel size = 3× 3 69.7
✓ kernel size = 5× 5 67.1
✓ kernel size = 7× 7 66.2

✓ hidden size = 256 51.8
✓ hidden size = 512 65.2
✓ hidden size = 1024 65.9
✓ kernel size = 3× 3 72.1
✓ kernel size = 5× 5 70.4
✓ kernel size = 7× 7 68.5

Modality and TE

I first investigated the effectiveness of the proposed network by changing the input modalities,
temporal aggregating manners, and hyper-parameters, as presented in Table 3.4. In this case, I
conducted the experiment using only a single original view without the VE module because applying
1D-LSTMs in the TE module that includes the ATFF block, which addresses 2D spatial features, is
difficult. Silhouettes are commonly used as the input format for gait recognition using RGB cameras.
In contrast, depth images are obtained from 3D depth sensors, including LiDAR sensors, which
contain richer contextual information than silhouettes and RGB images. In the TE part, I enhanced
the recognition performance by replacing the previously used LSTMs in [79] with ConvLSTMs [59]
to effectively extract spatio–temporal features. The accuracies shown in Table 3.4 represent the
averages across all the cross-view and cross-distance combinations. The use of depth image sequences
and ConvLSTMs yields superior results compared with others, either individually or in combination.
This improvement could be attributed to two main reasons: depth images capture gait features
better because of their textural information, and ConvLSTMs consider temporal features with an
additional spatial property and learn them simultaneously, as opposed to 1D-LSTMs.

Impact of RE

In Table 3.5, the experiment was conducted using only a single spatial encoding unit of the VE
module with the original view, to evaluate the effectiveness of the RE module with the ATFF block.
This setting is the same as that in the aforementioned ablation study. In Table 3.5, the comparison
metrics Ihigh-res , Îlow-res, f̂high-res, f̂low-res, and f1 are presented in Fig. 3.4 (b) and Fig. 3.6. The
average accuracies obtained using a single resolution were lower than the results in the last four
rows of Table 3.5, using only a single experiment by changing the components of the VE module
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Table 3.5: Ablation experiment for resolution-adaptive encoding (RE) (%)

Original Res.(Ihigh-res) Low Res.(Îrow-res)
Fusion Mean

Methods T -pooling Attention Targets (f1)
✓ 63.3

✓ 51.4
✓ ✓ Element-wise Add. 69.9
✓ ✓ Channel-wise Concat. 69.5
✓ ✓ SE-Net [22] 71.4
✓ ✓ ATFF Low Res. (̂flow-res) 68.7
✓ ✓ ATFF ✓ Low Res. (̂flow-res) 72.1
✓ ✓ ATFF ✓ Original Res. (fhigh-res) 71.8

and the spatial encoding unit of the VE module with the original view. Gait images with low
resolution are insufficient for independently extracting spatial features. Among the fusion methods,
the proposed ATFF block with squeezing the dimension T achieved the highest performance and
outperformed both the simple combination of two spatial features and the direct application of
the original architecture from [22]. This performance could be attributed to the ATFF block re-
calibrating the scores of both input features in a correlated manner, which resulted in considerable
robustness and adaptability to changing conditions. Compared with the original structure of [22]
that considers channel-wise interrelationships, in the proposed attention strategy, the two spatial
features are fused by mutually comparing their scores across channels. Furthermore, the use of the
ATFF block with T pooling compresses global temporal features related to gaits, which results in
improved discrimination power compared with not using temporal pooling. In the last two rows
of Table 3.5, a slight difference in recognition accuracy was observed when the two targets f̂low-res

and fhigh-res were switched in the ATFF block. This result indicates that The two scores s1 and s2
converge to be the same during the training.

Impact of VE

Table 3.6: Ablation experiment for viewpoint-adaptive encoding (VE) (%)

Original view Side-view Back-view Fusion Mean
✓ 72.1

✓ 73.4
✓ 77.3

✓ ✓ Average Pooling [1] 79.1
✓ ✓ Max Pooling 78.5
✓ ✓ Concatenating 77.3
✓ ✓ ATTF (T = 1) 81.2

Table 3.6 presents the results of the ablation experiment to investigate the effect of the VE
module, which utilizes two invariant gait shapes with the ATFF block to fuse their features. This
experiment was conducted by changing the components of the VE module based on the complete
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proposed network. In the first three lines of Table 3.6, the performance adopting the GDT process
outperforms that of the original view. This phenomenon suggests that aligning the walking directions
allows for better extraction of coherent gait patterns. In the overall average accuracies in Table 3.6,
the approaches that consider two invariant viewpoints exhibit superior performance compared with
those of single views. This method demonstrates better performance than either pooling approaches,
which were used in the previous version [1], or the simple concatenation approach. These results
indicate that the ATFF method renders the proposed network more robust to self-occlusions caused
by changes in the emission direction of the lasers. This effectiveness was achieved by considering
the higher influence between the two viewpoints in an end-to-end manner.

3.5.5 Practicality

Galleries collected from practical scenarios have limitations in terms of viewing angles or quantity of
data, compared with typical cross-view challenges. The proposed recognition model could be more
effective in these limited conditions because it flexibly uses the gait shapes of the two viewpoints.
In this section, I investigated the practicality of the proposed model, comparing with the prior
methods [6, 61,79]. The experiment was conducted by restricting the viewing angle of the galleries.
Specifically, I saved only a single angle as a database for each of the following: 270◦ (side view), 0◦

(back view), and 315◦ (oblique view). Compared with typical cross-view experiments, this scenario
is more challenging because of limitations not only in viewing angles and gait sequences but also in
the point cloud densities of the galleries. I evaluated the recognition models from three perspectives,
namely projection, viewpoint, and network, for which the combinations are the same. Each accuracy
value in Table 3.7 is the average of eight probe views and two cross-distances per viewing angle of
the gallery.

In Table 3.7, the proposed projection approach (Ortho.) outperformed the previous way (Spher.)
for all networks in terms of the original view. A possible reason for this is that the sorted walking
directions representing consistent dynamics can extract the gait features. When the viewing angles of
the galleries and viewpoints transformed using the GDT processing were identical, this orthographic
projection improved the recognition performance considerably, except for Network 1 in [79]. When
the walking angles of the galleries reached the target angles of the GDT, visual differences such
as partial occlusions or depth values in gait images were observed, which resulted in distinct gait
features. The accuracies of the prior spherical projection deteriorated when the GDT was applied.
Based on these results, the point cloud projection approach achieves superior compatibility with the
transformation of gait angles because of the undistorted geometric features of the gait. Finally, the
proposed model, which utilizes two fixed gait shapes selectively with the proposed attention manner,
achieved the best performance for all combinations, from all viewing angles of the galleries.
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Table 3.7: Comparison with prior studies for evaluating practicality by limiting viewing angles (%)

Networks Modalities Projection Viewpoints Gallery
Sensor-view Side-view Back-view 270 ◦ (Side-view) 0 ◦ (Back-view) 315 ◦ (Oblique-view)

Benedek et al. [6] GEI
Spher. ✓ 26.3 36.8 25.4

✓ 38.3 37.6 40.2

Ortho. ✓ 44.2 48.1 46.5
✓ 43.7 51.1 47.4

Shiraga et al. [61] GEI
Spher. ✓ 26.4 28.1 25.2

✓ 17.8 18.8 18.9

Ortho. ✓ 46.5 54.3 51.5
✓ 51.2 44.7 53.3

Yamada et al. (Network 1) [79] Depth Seq.
Spher. ✓ 31.0 25.3 32.3

✓ 14.4 16.2 18.0

Ortho. ✓ 53.9 48.6 50.5
✓ 33.7 45.1 45.6

Yamada et al. (Network 2) [79] Depth Seq.
Spher. ✓ 31.0 28.2 33.6

✓ 15.2 15.8 17.3

Ortho. ✓ 33.5 41.9 45.8
✓ 43.4 46.6 43.4

Proposed Depth Seq.

Spher.

✓ 39.1 53.4 39.5
✓ 50.8 47.5 48.3

✓ 40.4 49.6 47.0
✓ ✓ 50.9 49.5 52.1

Ortho.

✓ 64.3 62.4 68.9
✓ 67.8 61.3 66.6

✓ 63.3 67.7 67.4
✓ ✓ 73.0 70.2 72.7

(a) (b) (c)

(d) (e) (f)

Figure 3.9: t-SNE visualization of the gait features from 10 subjects, each with 8 views, 2 distances,
and 42 sequences. The top row shows the proposed model, in which the RE and VE modules are
applied in order from left to right. In this case, (a), (b), and (c) correspond to the top line of
Table 3.5 and the top and bottom lines of Table 3.6, respectively. The bottom row shows the prior
methods, with [61], [79], and [1] are listed in order from left to right. In this case, all these networks
are applied to the proposed point cloud projection and GDT processing.
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3.5.6 Feature Visualization through t-SNE

In this section, I describe a qualitative evaluation by applying t-SNE [72] to visualize gait features
through a 2D manifold space. Using the learned recognition models, I extracted features from gait
sequences for all the eight viewing angles and two distances with ten subjects who were not used in
the training. The top row in Fig. 3.9 presents a visualization of gait features extracted from the
proposed model, which were gradually applied with RE and VE modules from left to right. Adding
more proposed modules results in narrower intra-class distances and wider inter-class margins, as
displayed in Fig. 3.9. I visualized the features of the prior methods in the bottom row of Fig. 3.9,
representing the results of [61], [79], and [1] from left to right. Here, these recognition networks
were applied to the proposed point cloud projection (Ortho.) and the GDT processing because
these approaches achieved the best accuracy for each network in this section. The distances of
points between intra- and inter-class reveal that the proposed complete model exhibits superior
discrimination power, compared with the three prior methods.

3.6 Conclusion
I proposed a depth-based gait recognition model using a LiDAR sensor, which is a modified version
of the model presented in the previous chapter. The effectiveness of the model was explored in-
depth from three perspectives: point cloud projections, gait direction transformation, and the gait
recognition network. In this model, gait shapes from multiple invariant viewpoints are generated
from point cloud sequences, and gait features are extracted using a proposed attention method
that effectively fuses two similar features. Experiments on the collected dataset demonstrated that
the proposed approach achieved superior recognition performance in both cross-view and cross-
distance challenges compared to prior methods. Moreover, based on extensive experimental results,
the proposed model exhibited significant potential for practical applications, even in scenarios with
limited viewing angles.



Part II: The Development of
Gait Upsampling Models



Chapter 4

Upsampling Modeling for LiDAR
Gait Sequence Data

4.1 Introduction
In the previous chapter, I introduced a gait-based identification model utilizing LiDAR projection
to address sparse LiDAR gait data. Through comprehensive experiments, I validated its potential
applicability in long-range measurement environments. However, this approach requires training
the network with sparse gait inputs, which are influenced by variations in both the range and
emission specification of LiDAR sensors. Collecting a comprehensive training dataset that accounts
for all possible cases of gait sparsity is impractical. Furthermore, sparse gait data inherently lacks
fine-grained appearance information, making it challenging to achieve accurate person identification
using only a recognition network.

Recent studies on 3D LiDAR-based gait recognition have emerged, enabled by the large-scale Li-
DAR gait dataset, SUSTeck1K [58]. These studies demonstrate that 3D LiDAR sensors outperform
traditional RGB cameras due to their independence from lighting conditions and their ability to
capture precise 3D geometry. However, these findings are limited to short-range scenarios (5-15 m)
and rely on high-specification, high-cost sensors, such as the 128-beam LiDAR scanner (Velodyne
VLS-128), [18, 58]. When deploying LiDAR sensors in person identification systems, the sparsity
of pedestrian data is highly influenced by measurement distance and hardware specifications, par-
ticularly with low-resolution sensors such as 32-beam scanners discussed in Chapter 2 and 3. This
sensitivity often leads to significant degradation in identification performance due to sparse or in-
complete representation of the human body, limiting the ability to capture the fine-grained structure
of the original pedestrian shapes. Addressing these difficulties requires reconstructing the underlying
or the complete gait shapes from sparse LiDAR data.

47
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Figure 4.1: Upsampled results using the proposed model. I present sparse LiDAR gait sequence
data as inputs (top two rows) alongside the corresponding outputs (bottom two rows), represented
in both 3D point cloud sequences (rows 1 and 3) and 2D depth videos (rows 2 and 4).

To address this challenge, in this chapter, I introduce a gait sequence upsampling model for
sparse LiDAR pedestrian data, as shown in Fig. 4.1, aiming to enhance the generalization capa-
bility of existing identification models. The proposed method utilizes diffusion probabilistic models
(DPMs) [20], which have shown high fidelity in generative tasks, including image completion. Specif-
ically, I treat the missing points within gait shapes using a distance-independent inpainting strategy
by projecting pedestrian point clouds into a 3D Euclidean space, feeding them into a diffusion-
based architecture with corresponding conditional masks. Furthermore, to ensure consistency in
time-sequential gait appearances, I employed a video-based noise prediction model [27] during the
denoising process. To the best of my knowledge, this is the first study to address LiDAR data
upsampling for gait recognition. In the experiments, I demonstrate the effectiveness of the proposed
model on two datasets: the SUSTeck1K [58], a large-scale gait dataset, and the collected dataset
used in Chapter 3. Both datasets were utilized to evaluate generative quality and improvements in
identification performance.

The contributions of this study can be summarized as follows:
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• I present a LiDAR upsampling method based on conditional diffusion models that utilizes a
distance-independent inpainting approach to enhance the generalization capability of existing
LiDAR-based recognition models.

• By employing a video-based noise prediction technique, the proposed diffusion model ensures
consistency in the sequential pedestrian gait shapes. In addition, I used a continuous time
schedule for fast and efficient LiDAR upsampling.

• In the experiments, I observed that the proposed upsampling model significantly reduces the
performance gap in gait recognition tasks across LiDAR data with varying point cloud densi-
ties.

4.2 Related Work

4.2.1 Gait-based Identification Models

Traditional camera-based gait recognition methods can be broadly classified into two types: appearance-
based approaches and model-based approaches. The former focuses on extracting gait features di-
rectly from the visual appearances of the human body, such as images or videos [9,12]. In contrast,
the latter parameterizes visual data into human structures, such as shape-aware and non-shape-aware
poses [69,87], and analyzes them to extract gait-related features.

Most existing studies on person identification using LiDAR sensors have employed appearance-
based approaches with 2D representations, as the resolution of LiDAR sensors is generally lower
than that of RGB cameras, making human pose estimation less effective. Benedek et al. [5, 6, 16]
proposed a projection-based model using gait energy images (GEIs) [17] to re-identify individuals in
short-term scenarios. However, this method struggles to satisfactorily extract dynamic features from
gait frames. The previous study [79] utilized temporal gait changes by employing long short-term
memory (LSTM) networks with sequential range representations, optimized for processing efficiency
based on the sensor’s specifications. However, this approach is unsuitable for real-world scenarios,
such as varying capture distances and pedestrian walking directions. Building on these challenges, I
explored view- and resolution-robust recognition frameworks by rearranging pedestrian point clouds
based on a gait direction vector [1, 2]. Although this method enhances identification performance
under complex confounding conditions, it still lacks the geometric features necessary for distance-
independent analysis. Shen et al. [58] collected a large-scale LiDAR-based gait dataset, SUSTeck1K,
and designed a flexible and effective projection-based identifier. While this method shows promising
results compared to camera-based methods [12] at short measurement distances or with dense LiDAR
sensors, such as Velodyne VLS-128, its performance degrades with longer distances or lower sensor
resolutions, a challenge also noted by [79]. Han et al. leverage two modalities, including range view
images and raw point clouds from LiDAR data, to utilize essential geometric information.
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4.2.2 Diffusion Probabilistic Models for LiDAR Data Generation

Diffusion-based generative models [20, 62, 65] have gained significant attention across a wide range
of applications, including text-to-image generation [53], speech synthesis [29], translation [36], and
compression [68]. Compared with generative adversarial networks (GANs) [14], another prominent
generative framework, diffusion models allow for stable training with a simple objective function
by approximating likelihood maximization. Specifically, denoising diffusion probabilistic models
(DDPMs) [20], a type of diffusion-based model, have demonstrated notably high fidelity for various
completion tasks [52, 54]. These models learn the general distribution of a dataset by iteratively
adding noise to the input data and then denoising it from Gaussian noise during the inference
phase.

Several studies on LiDAR data tasks, primarily focusing on scene completion, have employed
diffusion-based frameworks. Zyrianov et al. [88] utilized NCSNv2 [64], a score-based generative
model, to train both the range and reflectance modalities using image representations. Nakashima
et al. [48] adopted unconditional DDPMs, incorporating inpainting and timestep-agnostic techniques
[27,43], to enhance both the fidelity and efficiency of LiDAR data synthesis for sim2real applications.
Sander et al. [19] introduced LiDAR upsampling models based on conditional DDPMs [54], achieving
faster sampling while maintaining high fidelity compared with prior works [48,88]. In contrast to [19],
which utilizes spherical projection, I employ conditional DPMs [54] for LiDAR gait data completion,
regardless of the sensor’s distance, using an orthogonal projection strategy. Furthermore, I design a
video-to-video translation model to ensure the time-sequential consistency of the gait data.

4.3 Method
In this section, I describe the problem of addressing missing parts in gait shape sequences and
introduce the formulation of conditional DDPMs in relation to LiDAR data representation, loss
function, and denoiser used for iterative refinement.

4.3.1 Problem Statement

The 3D point cloud data captured from single LiDAR sensors can generally be transformed into
range images. Most existing studies [19,48,88] on LiDAR data generation have adopted a spherical
projection function, which assigns an angular pixel to each angle: azimuth θ and elevation ϕ. This
projection method provides well-aligned, one-to-one mapping and is cost-efficient for processing Li-
DAR data, as most LiDAR sensors used in autonomous driving are designed to spin mechanically
and emit laser beams in a spherical pattern. In contrast, orthographic projection directly maps Li-
DAR point clouds onto depth images within 3D Euclidean space. Compared to spherical projection,
the orthographic projection method [1, 2, 6] preserves the full size of objects regardless of varying
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measurement distances and does not rely on specific laser beam patterns from the sensors. In ad-
dition, it eliminates the need for linear interpolation of pedestrian heights, which is often required
in traditional camera-based gait recognition models [12, 58]. The missing points of the gait shapes
in orthographic projection can be addressed using a distance- and emission-pattern-independent
inpainting strategy, which is a type of linear inverse problem:

y = H ⊙ x0 + ϵ, (4.1)

where x0 represents a watertight gait video captured from a single LiDAR sensor, y is an incomplete
gait video, H is a degradation noise mask, and ϵ represents noise. In this context, I assume that
the noise ϵ is set to zero. My goal is to solve this inpainting problem and recover x0 from the
measurement y as a completed gait shape across varying measurement distances using conditional
diffusion models.

4.3.2 LiDAR Data Representation

Based on the problem statement, I introduce an orthogonal projection method for LiDAR gait
completion that can be directly visualized using sensors. Given a pedestrian point cloud dataset
P = {Pj

i |i = 1, 2, ..., I ; j = 1, 2, ..., Ji} with I individuals and Ji sequences for each individual i.
Each point cloud sequence Pj

i ∈ RF×N×C has F frames, N points for each frame f and the number
of channels C represent Cartesian coordinates (x, y, z). Given a gait point cloud Pj

i , the center
of mass cj

i = (cji,f,x, c
j
i,f,y, c

j
i,f,z) for frame f is defined as cj

i = 1
N

∑N
n=1 pj

i,f,n, where cji,f,z is set
to zero because only the sensor emission directions on the xy-plane are considered. Subsequently,
given a sensor-view angle θsensor

j
i,f = arctan(cji,f,y, c

j
i,f,x) for the frame f on the xy-plane for a given

point cloud sequence Pj
i , the rotated point cloud sequence P̂j

i ∈ RF×N×C with a directional angle
θsensor

j
i,f is obtained as follows:

p̂j
i,f,n = (pj

i,f,n − cji,f ) ·Rz(θsensor
j
i,f + π), (4.2)

where Rz represents the rotation matrix around the z-axis.
As in the chapter 3, the point cloud sequence Pj

i is transformed into a gait image sequence
yj
i ∈ RF×1×H×W . The gait image yj

i,f of each frame f has a resolution of W (= ly/ry) in azimuth
and H(= lz/rz) in elevation and its depth value for an arbitrary point p̂j

i,f,n at each (h,w) is
determined as follows:

h =

⌊
1

rz
· (p̂ji,f,n,z − min

n∈{1,...,N}
(p̂ji,f=0,n,z) + lz−const)

⌋
, (4.3)

w =

⌊
1

ry
· (p̂ji,f,n,y +

ly
2
)

⌋
, (4.4)
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Figure 4.2: Overview of the upsampling pipeline. The diffusion processes operate within the ortho-
graphic projection domain with normalized depth values. The sampled depth projection sequences
are then translated into 3D point cloud data.

, where lz is the height of the z-axis, ly is the width of the y-axis, rz is the elevation resolution of
H, ry is the azimuth resolution of W , and lz−const is the z-positional normalization constant for the
generated gait video yj

i . Here, when more than one point exists in the same pixel, the largest value
is adopted, which is similar to the Z-buffer algorithm. In this work, lz, ly, rz, ry, lz−const, H, and
W are set to 2.6 m, 2.6 m, 0.04 m, 0.04 m, 0.3 m, 64, and 64, respectively.

4.3.3 Preliminaries for DDPMs

In this study, inspired by [54], I build a diffusion-based inpainting model, as shown in Fig. 4.2,
conditioned on observation y (for simplicity, j and i are omitted). Additionally, I employed the
DDPM framework, which formulates transitions between data and latent spaces with continuous
time t ∈ [0, 1] [27]. Compared with discrete-time diffusion models [20], a continuous noise schedule
offers a finer approximation of the variational lower bound (VLB), leading to improved optimization
efficiency. In standard DDPMs, the process begins with Gaussian diffusion, where the data sample
x0 is gradually corrupted by adding Gaussian noise from t = 0 (least noisy) to t = 1 (most noisy),
resulting in a noisy version of x, referred to as latent variable zt.

In the forward diffusion process, the distribution of latent variable zt conditioned on x0 for any
timestep t can be given by:

q(zt|x0) = N (αtx0, σ
2
t I), (4.5)

where αt and σ2
t are strictly positive scalar-valued functions of t in the noise schedule. In this study,

I employed α-cosine schedule [49], which is one of the most popular schedules, resulting in αt =

cos(πt/2) and σt = sin(πt/2). Transition zt can be tractably simplified using a re-parameterization
trick as zt = αtx0 + σtϵ, where ϵ ∼ N (0, I). The signal-to-noise ratio of zt can be defined as
λt = α2

t /σ
2
t , where αt =

√
1− σ2

t following the variance-preserving diffusion process [65]. The
transition of the latent variable q(zt|zs) from timestep s to t for any 0 ≤ s ≤ t ≤ 1 is also Gaussian,
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written as:
q(zt|zs) = N (αt|szs, σ2

t|sI), (4.6)

where αt|s = αt/αs and σ2
t|s = σ2

t − α2
t|sσ

2
s . Given the above distributions, the reverse diffusion

process p(zs|zt) can be defined as:

p(zs|zt) = N (µt(x0, zt),Σ2
t I), (4.7)

where µ(x0, zt) =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

x0 and Σ2
t =

σ2
t|sσ

2
s

σ2
t

.

4.3.4 Noise Prediction Model

In this study, I used a modified 3D U-Net architecture [27] as a noise prediction model ϵ̂θ(·), a
parameterized neural network, to predict the noise ϵ and ensure consistent natural gait shapes
across video frames F . Compared with the standard U-Net architecture in [20,54], this 3D U-Net is
factorized over space and time. Specifically, it includes space-only 3D convolution blocks, and the
attention in each spatial attention block is applied over the space. In addition, temporal attention is
used after each spatial attention block, with relative position embeddings applied in each temporal
attention block, making it suitable for video data generation.

4.3.5 Loss Function

I define the objective function for the proposed diffusion model to estimate unknown x̂ from latent
variable zt with a conditional observation y. In this paper, the target of the loss function is set to
the noise ϵ, and the latent variable zt for each timestep t is repeatably initialized by combining the
conditional masks m ∈ RF×1×H×W according to observation y as follows:

zt ← m⊙ y + (1−m)⊙ zt, (4.8)

m(f,1,h,w) =

1, if y(f,1,h,w) > 0,

0, otherwise.
(4.9)

Subsequently, the loss function is defined by concatenating the observation y and initialized latent
variable zt along the channel axis, as follows:

LT→∞ = Eϵ∼N (0,I),t∼U(0,1)[||ϵ̂(concat(y, zt);λt)− ϵ||22]. (4.10)

After the training phase, the gait data can be sampled by recursively inferring p(zs|zt), where x

is approximated by x̂θ = (zt − σtϵ̂θ(concat(y, zt);λt))/αt with a finite number of timesteps T from
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t = 0 to t = 1. In addition, I mask the loss to compute only the unknown regions in the depth
videos for more efficient training, as in [19].

4.4 Datasets
The performance of the proposed model was evaluated using two datasets. The first is the SUSTeck1K
dataset [58], which is a well-known LiDAR point cloud benchmark for gait recognition. It was col-
lected using a 128-beam LiDAR scanner (Velodyne VLS-128), capable of capturing objects and
surroundings with high resolution, allowing for dense measurements. Compared to the datasets
used in Chapters 2 and 3, which consist only of the Normal walking condition, this dataset involves
12 gait attributes, such as Bag and Umbrella. In addition, this dataset includes data from 1,050
identities and eight viewpoints, making it suitable for training both identification and generative
models, as well as for evaluating general-purpose performance. In the experiments, I used the train-
ing subset of the SUSTeck1K as a clean/complete dataset to learn the distribution of gait shapes
for upsampling models.

The second dataset [2] was collected in previous Chapter 4 using a 32-beam LiDAR scanner
(Velodyne VLP-32C), which has a lower resolution (fewer vertical laser beams) than the sensor used
in the SUSTeck1K dataset, resulting in sparser pedestrian point clouds at the same measurement
distances, as shown in Table 4.1. This dataset consists of 30 identities, 8 views, and 2 comparative
distances, all captured with a single gait attribute (Normal). The rotation speed of the LiDAR
sensor was the same for both datasets, operating at 10 frames per second (FPS).

Table 4.1: Comparison between two datasets

Datasets Sensors Beams V/H Resolutions Subjects Views Distances
SUSTeck1K [58] VLS-128 128 0.11◦/0.1◦ 1,050 12 7.5 m

Ahn et al. [2] VLP-32C 32 1.33◦/0.1◦ 30 8 10, 20 m

4.5 Experiments
In this section, I demonstrate the effectiveness of the proposed upsampling method on both the
generation and gait recognition tasks.

4.5.1 Implementation Details

Following the original protocol, I used a subset of SUSTeck1K, consisting of 250 subjects, for training
the upsampling model. I trained the proposed model for 200,000 iterations with a learning rate of
0.0003 and a input sequence length of 10 frames, while computing an exponential moving average
(EMA) of the model weights with a decay rate of 0.995 every 10 steps. The code for all experiments
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was implemented using Python in PyTorch 2.0, and executed on a dual NVIDIA GeForce RTX 3090
GPU (approximately 45 hours to train). I used two types of binary noise masks to degrade the
original data during the training phase: pepper noise and vertical line masks, as shown in Fig. 4.3.
Pepper noise masks (P) are generated by randomly mapping points from a Bernoulli distribution to
simulate noise in the azimuth based on the captured distances. In contrast, the vertical line masks
(V) represent the beam-level noise at the elevation of the LiDAR sensors. In this study, I used three
different ratios for each noise mask type and paired them with the original gait data during the
training.

Figure 4.3: Noise masks used for training and testing the proposed model. All mask sizes are 64×64,
and the black regions in each binary noise mask indicate the points removed from the clean gait
data.

For the testing phase, I used the remaining test set of SUSTeck1K, which consists of 800 sub-
jects, randomly selecting 10 frames for each with three different combinations of noise masks. In
the applicability experiment, I used the dataset collected in Chapter 3 [2]. As a baseline, I com-
pared the proposed diffusion model with the vanilla Palette [54] using the proposed projection on
two datasets. In addition, I compared the well-established linear interpolation methods: Nearest-
neighbor, Bilinear, and Bicubic. In the generative quality evaluation, I adopted the following two
widely-used standard metrics: the Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity
Index (SSIM). I also focused on Consistency, which is a metric for video generation that evaluates
temporal coherence by calculating the gradient between consecutive video frames. In the gait recog-
nition task, I used LidarGait [58] as the representative state-of-the-art identification model, which
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was pre-trained on the training set of SUSTeck1K, following the original protocol. In this study,
identification accuracy refers to the average of the results obtained from all cross-views and gait
attributes. In addition, all gallery sets consisted of clean data, whereas noise masks were applied to
the probe sets during testing on the SUSTeck1K dataset. All diffusion-based models were configured
with a fixed timestep T of 32. For this study, both the proposed upsampling model and LidarGait,
trained on the training set of SUSTeck1K, were applied in all experiments.

4.5.2 Generative Evaluation

The quantitative generative evaluation results on the SUSTeck1K dataset are listed in Table 4.2, and
the examples sampled by the proposed model for the gait attribute Normal are shown in Fig. 4.4.
In Table 4.2, diffusion-based methods significantly outperformed the interpolation approach across
all three metrics. Comparing the proposed model to Palette [54], I observed that the video-based
model [27] is more effective than the image-based approach. Notably, as the noise masks became
more severe, the performance gap between the proposed model and Palette increased. For other gait
attributes in Fig. 4.5, it can be observed that the proposed method realizes high fidelity in both 2D
projected gait shapes and the structure of 3D point clouds.

Table 4.2: Generative evaluation of the SUSTeck1K dataset with noise masks

Means (Test set)
Upsampling V×1/2, P×1/6 V×2/3, P×2/6 V×3/4, P×3/6

Approach Method Input Modality PSNR ↑ SSIM ↑ Consistency ↓ PSNR ↑ SSIM ↑ Consistency ↓ PSNR ↑ SSIM ↑ Consistency ↓
Interpolation Nearest-neighbor Depth Image 6.90 0.031 0.041 6.84 0.029 0.043 6.78 0.025 0.045
Interpolation Bilinear Depth Image 20.90 0.852 0.016 20.99 0.841 0.017 20.83 0.840 0.019
Interpolation Bicubic Depth Image 21.05 0.855 0.017 21.08 0.843 0.017 20.90 0.842 0.019

Diffusion Palette [54] Depth Image 26.14 0.940 0.009 24.17 0.908 0.013 23.15 0.888 0.017
Diffusion Proposed w/o masking loss Depth Video 27.22 0.953 0.007 25.56 0.932 0.010 24.86 0.922 0.011
Diffusion Proposed Depth Video 27.27 0.954 0.007 25.59 0.932 0.010 24.89 0.922 0.011

4.5.3 Gait Recognition Task

The identification results conducted on SUSTeck1K using LidarGait [58] are listed in Table 4.3.
In Table 4.3, it can be observed that the interpolation approach achieves little to no improvement
in recognition performance on sparse gait data. Similar to Table 4.2, it can be observed that the
proposed model outperforms Palette as the noise level in the probe set increases because of its ability
to maintain consistency in appearance across gait sequences, as shown in Fig. 4.6.

Fig. 4.7 shows the identification evaluation scores as functions of the number of function evalu-
ations (NFE), which indicate how many times the neural networks are processed during sampling.
For all noise mask combinations, it can be observed that overall performance generally improves as
T increases, while remaining consistent even when T is reduced to 4.
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Figure 4.4: Upsampled results using the proposed model on the SUSTeck1K dataset for the Normal
attribute with three noise mask combinations. The pixels represent depth values calculated from
behind in the sensor’s emission direction with depth normalization, where red indicates greater
depth, as shown in the color bar on the right. In other words, the redder the color, the closer it is to
the sensor. This representation is consistent across all figures in the projection domain represented
in Chapter 4.
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Figure 4.6: Comparison between the proposed model and Palette [54]. The results are sampled from
noise masks with V×3/4 and P×3/6 (top two rows).
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Table 4.3: Identification Evaluation using a LidarGait on SUSTeck1K dataset with noise masks

Means (Probe set)
Upsampling V×1/2, P×1/6 V×2/3, P×2/6 V×3/4, P×3/6

Approach Method Input Modality Rank1 ↑ Rank5 ↑ Rank10 ↑ Rank1 ↑ Rank5 ↑ Rank10 ↑ Rank1 ↑ Rank5 ↑ Rank10 ↑
1.40 5.85 10.13 0.18 1.08 2.34 0.15 0.82 1.68

Interpolation Nearest-neighbor Depth Image 0.17 0.93 1.78 0.17 0.86 1.67 0.16 0.78 1.54
Interpolation Bilinear Depth Image 1.35 5.16 8.52 0.62 2.58 4.86 0.44 1.96 3.72
Interpolation Bicubic Depth Image 1.51 5.63 9.16 0.73 3.01 5.37 0.52 2.20 4.08

Diffusion Palette [54] Depth Image 23.62 48.69 61.07 9.93 26.61 37.31 7.16 13.79 21.82
Diffusion Proposed w/o masking loss Depth Video 31.69 58.57 70.27 18.07 40.72 53.08 11.38 29.72 41.16
Diffusion Proposed Depth Video 32.49 59.77 71.28 18.97 42.09 54.52 11.85 30.68 42.26

Figure 4.7: Comparison of the number of function evaluations (NFE) for the proposed model by
sweeping T across {1, 2, 4, 8, 16, 32}.

4.5.4 Application

The identification results conducted on the collected dataset [2] using LidarGait [58] to evaluate
the applicability of our model are shown in Table 4.4. In addition, the gait shapes according to
the two different point cloud projections as illustrated in Fig. 4.8. In Table 4.4, I observed that
our upsampling method and training strategy significantly contribute to performance improvement,
even for real-world scenarios. Interestingly, the highest performance gain was achieved when both
the probe set and the gallery set were fully restored.

4.6 Conclusion
I introduced an upsampling method for LiDAR-based gait sequence data to address the distance-
independent inpainting problem. A conditional diffusion model was employed to tackle the inpaint-
ing problem in gait videos. Through comprehensive experiments, the proposed upsampling model
demonstrated significant performance improvements over existing methods in terms of both genera-
tion quality and gait recognition. Notably, the proposed model proved effective even for pedestrians
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Figure 4.8: Projection comparison on the real-world dataset [2] at two capture distances: spherical
projection (Spher.) and the proposed orthographic projection (Ortho.).
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Table 4.4: Identification results on the real-world dataset [2].

Upsampling Overall
Method Gallery (10 m) Probe (20 m) Projection Rank1 ↑ Rank5 ↑

Spher. 5.51 25.98
Ortho. 7.07 30.80

Palette [54] ✓ Ortho. 19.57 56.25
✓ ✓ Ortho. 25.45 63.54

Proposed ✓ Ortho. 21.28 60.94
✓ ✓ Ortho. 25.97 66.82

with varying sensor resolutions or measurement distances in real-world scenarios.
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Conclusion

In this dissertation, I have presented deep learning-based approaches in two aspects to enhance the
identification performance of 3D LiDAR-based gait recognition.

In Part I, I introduce a gait recognition model designed to be robust against variations in walking
direction and measurement distance. Compared to previous studies, this model employs orthogonal
projection to reduce errors caused by linear interpolation preprocessing and to accurately represent
pedestrian size in gait videos. As a gait representation, gait shape sequences from two invariant
viewpoints, combined with depth normalization and speed sequences, are employed to enhance
discriminative capability by leveraging the unique characteristics of 3D LiDAR sensors. For the
network technique, a multi-scale spatial encoding strategy is implemented to mitigate the adverse
impacts caused by changes in the sparsity of gait shapes. In the modified version of the above model,
an attention-based feature fusion strategy led to performance enhancement. In the experiments, the
effectiveness of the proposed model was demonstrated using datasets collected from two different
types of LiDAR sensors.

Despite the advantages of the proposed identification models presented in Part I, several research
questions remain unanswered. First, self-occlusion inherently occurs when projecting 3D pedestrian
point clouds in a specific direction. How can partial gait shapes be effectively learned to match the
gait features of complete gait data? As a potential approach to address this, it is considered feasible
to leverege generative models or foundation models to utilize the underlying distribution of complete
gait data for recovery and identification. Second, when pedestrian data becomes sparse, speed
information provides meaningful assistance; however, in the proposed model, there is a tendency
for identification performance to slightly decrease at close distances. How can pedestrian speed
information be effectively learned by the network as a gait feature? The walking speed information
used in Chapter 2 is considered to have oversimplified pedestrian movement on the xy-plane, which
is likely the reason for the performance degradation at short distances. Currently, research is being
conducted on reconstructing and modeling the human body using 3D LiDAR [33]. If the human
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skeleton can be accurately inferred from sparse LiDAR data, it is believed that the movement or
trajectory of the human pose over time can be effectively utilized as a gait feature. Collectively,
these questions and expectations shed light on future research directions for gait identifier modeling.

In Part II, I introduce an upsampling model designed to perform LiDAR sparse-to-dense tasks for
gait sequence data. Especially, it is intended to enhance the generalizability of identification models
for long-distance measurements. In this model, gait data is processed using a distance-independent
inpainting by orthogonally projecting gait data as viewed from the LiDAR sensor. Additionally,
video-based conditional diffusion models were developed to ensure the consistency of pedestrian
movements over time. In the learning phase, a noise mask strategy is employed to account for
changes in LiDAR data sparsity based on measurement distance. In the experiments, the proposed
upsampling model outperformed traditional interpolation methods and vanilla restoration methods
on both simulated noise datasets and real-world datasets with different types of sensor hardware.
Notably, experiments demonstrate that even for identification models trained exclusively on complete
gait data, the proposed upsampling model significantly enhances performance for gait data captured
by low-resolution LiDAR sensors or at long-range measurements.

The above practice demonstrates the effectiveness of the proposed model in Part II; however,
several issues remain. First, the diffusion model employed in this approach involves an iterative
generation process, resulting in slow processing speeds and high computational costs, which are im-
practical for real-time person identification applications. How can the inference speed for upsampling
gait data be improved? Recently, Flow Matching (FM) [40] has emerged as a generative technique
that matches the probability flow field between a source and a target distribution by solving an
ordinary differential equation (ODE). Unlike DPMs, it requires fewer steps for generation due to its
deterministic and noiseless ODE framework, which makes the sampling process more efficient. Ap-
plying the FM technique to upsampling models for LiDAR gait data is expected to reduce inference
time. Second, there is a growing need to address gait data affected by more complex noise patterns,
such as obstacle occlusion, shifting the focus toward gait data restoration rather than simple upsam-
pling. How can we address multi-task gait data restoration that includes occlusion? In Chapter 4,
I proposed a conditional diffusion model that incorporate task-specific approaches [52, 54]. In con-
trast, task-agnostic approaches learn the underlying data distribution and reconstruct data through
posterior sampling [43, 63]. While it can be easily plugged into various tasks without additional
training, their performance tends to be worse than task-specific approaches. If a restoration model
capable of effectively learning video or sequential point cloud data is developed, it is expected to
address not only upsampling but also challenges such as obstacle occlusion or frame-drops. These
suggestions will serve as a foundation for guiding future research directions.

The contributions of this study enable new capabilities, some of which are listed below.
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Domain extension for gait recognition

In the field of gait recognition, RGB cameras have traditionally been the primary devices for collect-
ing pedestrian data. On the other hand, LiDAR has emerged as a new technology that complements
the shortcomings of camera-based gait recognition, such as sensitivity to lighting conditions or view-
ing angles. However, the sparse gait data captured by these LiDAR sensors is known to be the biggest
challenge for person identification, which has limited its application in real-world environments. By
dealing with this challenge with two different perspectives—identification and upsampling models—
we not only take a step closer to practical applications but also inspire future research in LiDAR-
based gait recognition. Specifically, since this study leverages a LiDAR projection strategy, it is
expected to demonstrate strong compatibility with camera-based gait recognition, which addresses
2D videos of walking silhouettes (cross-domain).

Impacts of computer vision

In computer vision, LiDAR sensors have primarily been used to address tasks such as scene under-
standing in autonomous driving. However, few advances have been made in tasks related to single
objects, such as humans, because of the low density of LiDAR data. I believe that this study, which
addresses sparse human data, opens new horizons for similar tasks such as object recognition using
LiDAR sensors. On the other hand, the study proposed in Chapter 4 is expected to inspire restora-
tion tasks, especially those dealing with sequential data (e.g. videos), which have made very little
progress. Furthermore, it is not limited to upsampling gait data and has potential applicability to
other 3D human restoration tasks involving diverse poses.

Societal impacts

In terms of impacts of society, this study is expected to advance person identification capabilities
using LiDAR technology. Particularly, it is expected to enable the additional functionalities in
applications where LiDAR is essential, such as mobile robots or autonomous vehicles. For example,
LiDAR-based gait analysis could perform various functions, such as user identification and disease
diagnosis. Furthermore, more accurate gait analysis tasks could be achieved by moving beyond
traditional models that handle 2D images and instead utilizing 3D human modeling.

Research on 3D LiDAR-based gait recognition has only recently begun to make progress but still
lags behind camera-based research. Building on this study, I believe it will contribute not only to
advancements in person identification using LiDAR sensors but also to the realization of practical
applications in the future.
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