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• Introduction

• Part 1: Development of gait recognition models using 3D LiDAR
• Identification modeling for range variations
• Identification modeling through adaptive learning

• Part 2: Development of gait upsampling models for 3D LiDAR
• Restoration modeling for gait sequence data

• Conclusion 

Outline
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• Biometrics
• Technologies using physical characteristics to identify individuals
• Achieved substandtial advancements thanks to progress in AI

• Typical modalities

Introduction / Person Identification
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Iris Face Fingerprint



Introduction / Gait Recognition

• Biometric technology that identifies people based on their walking patterns
• Operates from a distance without user’s cooperation or physical contact
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Person identification 
based on gait analysis

[Fan+, CVPR’23]

ID matching with the databaseMeasurement of pedestrian data 
using a visual device 



Introduction / Camera-based Identification
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▪ Ease of use (low cost)
▪ High spatial resolution

▪ Leak 3D geometry information
▪ Sensitive to lighting conditions
▪ Senstive to varying camera’s

height/angle

Pros Cons
• Main device for gait recognition system so far: RGB cameras

Night attribute 
[Shen+, CVPR’23]

High-angle condition
[Zheng+, CVPR’22]



• Lighting Detection and Range (LiDAR)
• 3D sensors scanning of surrounding environments

• Well-suited for outdoor applications

Introduction / 3D LiDAR
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Semantic segmentation Object dection/tracking

Self-driving texi (Waymo)

LiDAR sensor



• LiDAR representation comparison
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3D point clouds 2D range images
(Spherical projection)

Introduction / 3D LiDAR

▪ Three or more coordinates
▪ Raw geometric data
▪ Unordered nature
▪ Time-consuming computations

▪ 2D ordered formats
▪ Ease of use (more practical)
▪ Quantization artifacts



Introduction / 3D LiDAR

• Visualization comparison
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RGB camera Depth camera LiDAR sensor

Field-of-View

Resolution

Illumination

High

Wide

Robust

→ Well-suited for outdoor criminal investigations or security systems!



Introduction / 3D LiDAR
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RGB camera Depth camera LiDAR sensor

• Visualization comparison



Introduction / LiDAR-based Gait Recognition
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▪ Wide range of directions/distances
▪ Robust to adverse weather
▪ Precise 3D geometry information

▪ Sensitive to distances
▪ Poor spatial resolution (sparse data)

Pros Cons

Distance Sparsity

Long

Short Dense

Sparse

Gait dataLiDAR data visualization



Introduction / Goals

• Primary challenge:
• Sparse pedestrian data caused by long distances

• Goal:
• Improve person identification performance by using deep learning techniques
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Introduction / Goals

• Explored in two aspects
• Part I: Development of gait recognition models using 3D LiDAR
• Part II: Development of gait upsampling models for 3D LiDAR
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Part I (1/2)
Chapter 2

Part I (2/2)
Chapter 3

Chapter 4

Part I Part II

Extension

Identification Upsampling

DL-based Model Developlement

Dessertation/presentation flow



Part I (1/2): Development of Gait Recognition Models 
using 3D LiDAR



Part I (1/2) / Motivation

• Applications using LiDAR-based person identification: 
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Security robots Autonomous vehicles

▪ Operated 24h a day
▪ Nighttime surveillance system
▪ Less conspicuous than humans

▪ Identify specific users
▪ Detect elderly people



Part I (1/2) / Motivation

• Necessary to design a robust identification model for intra-subject changes:
• Viewing angles 
• Measurement distances

• Invariant gait features under these complex conditions:
• Two fixed viewpoints
• Walking pace
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Part I (1/2) / Related Work

GEI-based identifier 
[Benedek+, IEEE T-CSVT’18]
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Depth-based identifier
[Yamada+, Advance Robotics’20]

Difficult to extract the dynamic 
feature under temporal changes

Performance degradation when the 
distance/direction is not constant



Part I (1/2) / Dataset

• Captured using a Velodyne HDL-32E
• Collected gait sequence data from 31 subjects
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Data acquisition environment

LiDAR data visualization



Part I (1/2) / Dataset

• Divided into 4 subsets according to the distance 𝑑𝑡
• Subset 1: 3.5-6 m
• Subset 2: 6-8.5 m 
• Subset 3: 8.5-11 m
• Subset 4: 11-13.5 m
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Contain the changes in the 360 
walking direction and the distance 

from 3.5 to 13.5 m



Part I (1/2) / Method

• Outline
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Input: LiDAR pedestrian 
sequence data

Person Identification
Gait direction transformation

Input generation
Recognition network

Raw LiDAR data

LiDAR sensor



Part I (1/2) / Method / Gait Direction Transformation

• Obtain a gait directional angle 𝜃𝑡:
• 𝜃𝑡 = arctan(𝑐𝑡+1,𝑦 − 𝑐𝑡−1,𝑦 , 𝑐𝑡+1,𝑥 − 𝑐𝑡−1,𝑥)

• Rotate the 𝐏𝑡 around 𝐜𝑡 as the 𝑧-axis:
• ෝ𝐩𝑡,𝑛 = 𝐑𝑧(−𝜃𝑡 − 𝜋/2) ∙ (𝐩𝑡,𝑛 − 𝐜𝑡)

• The case of generating a back-view gait image:
• ෝ𝐩𝑡,𝑛 = 𝐑𝑧(−𝜃𝑡 − 𝜋) ∙ (𝐩𝑡,𝑛 − 𝐜𝑡)
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𝐏𝑡: Original subject point set for the 
timestep 𝑡

𝐜𝑡: Center of gravity for a subject
𝐑𝑧: Rotation matrix around the 𝑧-axis
𝐏𝑡: Subject point set transformed

𝐜𝑡−1

𝐜𝑡

𝐜𝑡+1

𝐏𝑡
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Sensor view Left-side view Front view Bird eyes view

• Examples of GDT

Part I (1/2) / Method / Gait Direction Transformation



Part I (1/2) / Method / Input Generation

• Generate three inputs for the proposed network

22

𝐏𝑡
𝐈back ∈ ℝ𝑇×𝑉×𝐻×1

𝐈left−side ∈ ℝ𝑇×𝑉×𝐻×1

𝐯gait ∈ ℝ𝑇



• Extract gait videos representing the 
depth information of pedestrians

• Comparing surface depths at each 
pixel position on the projection 
plane (Similar to Z-buffer method)

• Obtain the gait image sequence 𝐈 ∈
ℝ𝑇×𝑉×𝐻×1 and the gait speed 
sequence 𝐯gait ∈ ℝ𝑇
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Subject A

Subject B

Subject C

Subject D

Left-side view Back view

Part I (1/2) / Method / Input Generation
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• Leverage the low resolution 
which may be robust to sparse 
data and better recognize 
coarse-grained patterns

• Combine multi-scale features 
extracted from different 
resolutions
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is responsible for learning the 
spatial-temporal gait features

• Capture spatio-temporal 
correlations simultaneously

Part I (1/2) / Method / Network
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Part I (1/2) / Method / Network
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pre-trained
(left-side view)

pre-trained
(back view)
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𝐈𝑙𝑒𝑓𝑡−𝑠𝑖𝑑𝑒 ∈ ℝ𝑇×𝑉×𝐻×1

𝐈𝑏𝑎𝑐𝑘 ∈ ℝ𝑇×𝑉×𝐻×1

𝐯𝑔𝑎𝑖𝑡 ∈ ℝ𝑇
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• Obtain more discriminative features 
from two viewpoints: Ileft−side and
Iback

• Aggregate the outputs of two netwo
rks pre-trained on different viewpoi
nts

Part I (1/2) / Method / Network



Part I (1/2) / Experiments / Implementation Details
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• Four combinations of four subsets were used for testing
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• Each dataset contains 31 subjects
• Training set : first 16 subjects
• Test set: remaining 15 subjects

• Identify subjects using the Nearest Neighbor Algorithm (Rank-1)
• Compute cosine similarity between the gallery and probe

• Settings:
• Loss function: Cross-entropy loss
• Optimization: RMSProp
• Learning rate: 0.001
• Training batch size: 20
• Regularization: early stopping

• patience: 20

Total training set 4 * 140 * 16 = 8,960

Total val. set 4 * 35 * 16 = 2240

Gallery set (in each pattern) 3 * 140 * 15 = 6300

Probe set (in each pattern) 1 * 35 * 15 = 525

Part I (1/2) / Experiments / Implementation Details
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• Achieved a better performance by gradually adding the proposed modules

Part I (1/2) / Experiments / Ablation Study
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• The left-side view gait video 𝐈left−side was used in two previous networks

• Present a better performance when all components were applied

Part I (1/2) / Experiments / Main Results



Part I (1/2) / Summary
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• The first attempt to develop a LiDAR-based gait recognition model aimed at 
enhancing robustnesss against variations in distance and walking direction

• Enhance discriminative performance through:
• Invariant multi-view projection

• Generalize gait features under variations in data sparsity variations through:
• Multi-scale spatial encoding
• Walking speed encoding

• Build a LiDAR gait dataset and demonstrate the effectiveness of the proposed 
identifier



Part I (2/2): Development of Gait Recognition Models 
using 3D LiDAR



Part I (2/2) / Motivation

• Challenges in Part I (1/2):
• Low inference speed and optimization difficulties during training
• Impact of self-occlusion on gait shapes
• The necessary to independently evaluate the performance with respect to 

changes in walking direction and measurement distance/sparsity

• Approaches:
• Design a novel attention block more adaptively to fuse two features for 

invariant viewpoint and spatial encoding in an end-to-end manner
• Conduct an in-depth ablation study to evaluate the effectiveness of the 

proposed modules
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Part I (2/2) / Method

• Overview

35
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Part I (2/2) / Method / Projection

• LiDAR projection comparison

36

Spherical projection Orthographic projection (proposed)



Part I (2/2) / Method / Gait Direction Transformation

• Obtain a gait directional angle 𝜃gait:

• 𝐜gait = 𝐜𝑇 − 𝐜0
• 𝜃gait = arctan(𝑐gait,𝑦, 𝑐gait,𝑥)

• Rotate the 𝐩𝑡,𝑛 around 𝐜𝑡 as the 𝑧-axis:

• ෝ𝐩𝑡,𝑛 = 𝐑𝑧(−𝜃gait − 𝜋/2) ∙ (𝐩𝑡,𝑛 − 𝐜𝑡)
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𝐜𝑇

𝐜0

𝐜𝑡 =
1

𝑁


𝑛=1

𝑁

𝐩𝑡,𝑛

𝐏𝑡 = {𝐩𝑡,1, 𝐩𝑡,2, … , 𝐩𝑡,𝑁}
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• Examples of GDT
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Part I (2/2) / Method / Gait Direction Transformation



Part I (2/2) / Attention-based Two-feature Fusing

• Architecture of an ATFF block
• An extension of SENets[Hu+, CVPR’18] designed to fuse two similar feature 

vectors
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Part I (2/2) / Method / Network

• Architecture of overall recognition network

40



• Architecture of spatial encoder unit

41

Part I (2/2) / Method / Network



• Captured using a Velodyne VLP-32C
• Gait sequence data collected from 30 subjects
• Distances: 10 m, 20 m
• Angles: 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°
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10 m

3D LiDAR 
Sensor

0°

90°

180°

270°

20 m

3D LiDAR 
Sensor

270°

0°

90°

180°

Part I (2/2) / Experiments / Datasets

Visualization of data acquisition environment
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• Each dataset contains 30 subjects
• Training set : first 20 subjects
• Test set: remaining 10 subjects

• Learning settings:
• Loss function: Cross-entropy loss
• Optimization: Adam
• Image size: 64x 44
• Num. of frames: 15
• Training batch size: 42
• Number of training data: 20 * 2 * 8 * 126 = 40,320
• Iterations: (40,320/42) * 50 = 48,000
• Height norm. (Spher.): Linear Interpolation

Part I (2/2) / Experiments / Implementment Details



Part I (2/2) / Experiments / Main Results
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• Gallery: 10 m and Probe: 20 m

Gallery

Probe

Networks Modalities Projections Viewpoints Means

Benedek et al. GEI

Spher.
Sensor 30.5

Side 32.2

Ortho.
Sensor 38.7

Side 54.9

Shiraga et al. Depth Seq.

Spher.
Sensor 30.0

Side 13.1

Ortho.
Sensor 42.1

Side 52.3

Proposed Depth Seq. Ortho.

Sensor 69.1

Side 71.1

Back 74.8

Side＋Back 81.7
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• Gallery: 20 m and Probe: 10 m

Gallery

Probe

Networks Modalities Projections Viewpoints Means

Benedek et al. GEI

Spher.
Sensor 27.5

Side 43.1

Ortho.
Sensor 53.3

Side 55.9

Shiraga et al. Depth Seq.

Spher.
Sensor 31.0

Side 36.7

Ortho.
Sensor 38.0

Side 61.3

Proposed Depth Seq. Ortho.

Sensor 75.2

Side 75.7

Back 80.7

Side＋Back 80.8

Part I (2/2) / Experiments / Main Results
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• Modality and TE

Part I (2/2) / Experiments / Ablation Study
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• Impact of RE

Part I (2/2) / Experiments / Ablation Study
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• Impact of VE

Part I (2/2) / Experiments / Ablation Study
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• Quantitative results

Part I (2/2) / Experiments / Practicality



Part I (2/2) / Experiments / Feature Visualization
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• Visuailze gait features through a 2D manifold space by using t-SNE

RE VE Viewpoints

(1) Sensor-view

(2) ✓ Sensor-view

(3) ✓ ✓ Side- and back-views

(1) (2) (3)
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• Feature visualization comparison

Part I (2/2) / Experiments / Feature Visualization

ProposedPart I (1/2)Yamada+, AR’20Benedek+, TCVST’20



Part I (2/2) / Summary
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• Proposed a attention block to adaptively fuse two gait features

• Explored in-depth from three-perspectives:
• Point cloud projection
• Gait direction transformation
• Recognition network

• Build a LiDAR gait dataset and achieved superior performance of proposed model 
in both cross-view and cross-distance condtions



Part II: Development of Gait Upsampling Models 
for 3D LiDAR



Part II / Motivation

• Recent studies on gait recognition using 3D LiDAR have emerged
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Part II / Motivation

55

• Changes in resolution/sparsity based on distances

RGB camera (reference)

Dist: 10 m Dist: 20 m Dist: 30 m

LiDAR visualization (VLP-32C)



Part II / Motivation

56

• Changes in resolution/sparsity based on emission patterns (hardware specifications)

Velodyne VLP-32CVelodyne HDL-32E Pioneer SSL-S01

D
is

t:
 1

0
 m

Use 32 
identical 
beams

Mechanical type Solid-state type



Part II / Motivation
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• Challenges:
• Sparsity of LiDAR data is heavily influenced by measurement distances and 

hardware specifications
• Collecting datasets for all distances and sensor types is practically difficult

→ Necessary to reconstruct the underlying/complete pedestrian shapes
from sparse data!



Part II / Motivation
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• Goals:
• Develop a gait sequence upsampling model for sparse pedestrian data
• Enhance the generalization capability of existing/future identification models

• Approaches:
• Employ a conditional diffusion model
• Restore missing parts of the gait data through an inpainting strategy

Pe
rs

o
n

 ID

IdentifierUpsampler

Sparse LiDAR data Dense LiDAR data

Proposed

Pre-trained on clean 
training data



Part II / Related Work
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Task-agnostic approach Task-specific approach

▪ Learns the underlying distribution and samples 
data by approximating the posterior

▪ Tends to be worse than the task-specific approach

▪ Conditional diffusion strategy
▪ Achieves superior performance across 

various multi-tasks
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DPS [Chung+, ICLR’23] Palette [Saharia+, CVPR’22]

Restoration 
model

GT data
Restoration 

Model

GT data
+

Noise pattern

• Typical signal/image restoration (inpainting) using diffusion models:



Part II / Method

• Overview
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Input: sparse LiDAR gait sequences Our results
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Part II / Method / Problem Statement

• In orthographic projection, missing points in gait shapes can be addressed as 
distance-independent inpainting problem
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𝐲 = 𝐻𝐱0 + 𝐳

𝐻𝐲 𝐱0

⊙=

Degradation noise mask

Incomplete gait video

Complete gait video

Gaussian noise

Pedestrian point cloud

LiDAR sensor

3D point cloud data
captured by a single 

LiDAR sensor cannot be 
addressed as GT data

due to its self-occlusion 

Orthograhic projection

Captured distance



Part II / Method / Projection

• Transform a raw pedestrian point cloud sequence 
𝐏 ∈ ℝ𝐹×𝑁×𝐶 into a depth video 𝐲 ∈ ℝ𝐹×1×𝐻×𝑊

from the sensor’s perspective (sensor-view)

• Obtain the rotated point cloud sequence 𝐏 ∈
ℝ𝐹×𝑁×𝐶

with a directional angle 𝜃sensor,𝑓:

• 𝜃sensor,𝑓 = arctan(𝑐𝑓,𝑦, 𝑐𝑓,𝑥)

• ෝ𝐩𝑓,𝑛 = 𝐏𝑓,𝑛 − 𝐜𝑓 ⋅ 𝐑𝑧(𝜃sensor,𝑓 + 𝜋)

• Project 𝐏 onto the 𝑥𝑧–plane
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Part II / Method / Network

• Overall of the upsampling network

63

3D U-Net

Orthographic projection 
with depth normalization

Sparse 
point cloud seq. 

Sensor-view

LiDAR 
sensor Inverse projection

Dense 
point cloud seq.

Forward process

Reverse process

𝐳~𝒩(𝟎, 𝐈) 𝐳𝑠 𝐳𝑡 𝐱

Conditional region 
masking/concatenation

Conditional 
observeation 𝐲

Complete projection seq.

• Extended from 2D image-based Palette [Saharia+, CVPR’22]
• Denoiser: 3D UNet with Relative Positional Embedding

• Initialization: 𝐳𝑡 ← 𝐦⊙𝐲+ (𝟏 −𝐦)⊙ 𝐳t
• Loss function: ℒ𝑇→∞ = 𝔼𝜖~𝒩 𝟎,𝟏 ,𝑡~𝒰(0,1)[ Ƹ𝜖(concat 𝐲, 𝐳𝑡 ; 𝜆𝑡) − 𝜖 2

2]



Part II / Experiments / Implementation Details

• Dataset comparison
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SUSTeck1K [Shen+, CVPR’23] KUGait30 [Ahn+, IEEE Access’23]

For training and 
generalizability evaluation

For practicality evaluation

Datasets Sensors Beams V/H Res. Subjects Angles Distances

SUSTeck1K VLS-128 128 0.11°/0.1° 1,050 8 7.5 m

KUGait30 VLP-32C 32 1.33°/0.1° 30 8 10, 20 m



Part II / Experiments / Implementation Details

• Used noise masks for training and testing in the generalization evaluation
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Pepper noise (𝐏) Vertical lines (𝐕)

× 1/6 × 2/6 × 3/6 × 1/2 × 2/3 × 3/4

▪ Simulate noise in the azimuth based on 
captured distances

▪ Represent the beam-level noise at the 
elevation of the LiDAR sensors

→ Artificially degrade the complete gait data from SUSTeck1K by 
applying the combination of two different mask types



Part II / Experiments / Implementation Details
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• SUSTeck1K dataset contains 1,050 subjects
• Training set : 250 subjects
• Test set: remaining 800 subjects

• Learning settings:
• Learning rate: 0.0003
• input sequence length: 10 frames
• Timesteps: 32

• Identifier for the gait recognition (person identification) task: LidarGait [Shen+, CVPR’23]
• trained on the clean training set of the SUSTeck1K

• Experiments:
• Generative quality:

• Quantitative evaluation -> Qualitative evaluation
• Gait recognition task:

• Genealizability evaluation (on the SUSTeck1K) -> Practicality evaluation (on the KUGait30)



Part II / Experiments / Generative Evaluation

• Quantitative results:
• Compared methods: 

• Three interpolations
• Palette

• Metrics: PSNR, SSIM, Consistency
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→ Our model is superior to all linear interpolations 
and vanilla Palette across three metrics

GT V × 1/2
+ 

P × 1/6

V × 2/3
+ 

P × 2/6

V × 3/4
+ 

P × 3/6



Part II / Experiments / Generative Evaluation

• Upsampled results using the proposed model on SUSTeck1K
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Part II / Experiments / Generative Evaluation
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• Upsampled results using our model across three angles on SUSTeck1K



Part II / Experiments / Generative Evaluation
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• Upsampled results with various attributes using our model on SUSTeck1K



Part II / Experiments / Generative Evaluation

• Comparison between our model and vanilla Palette [Saharia+, CVPR’22]:
• The proposed model preserves frame-consistency more effectively
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Part II / Experiments / Gait Recognition Task

• Quantitative results:
• After restoring missing parts in input data with methods, gait features are 

extracted from the data by using the pre-trained LidarGait
• Matche subject ID between Gallery and Probe by using k Nearest Neighbor 

(kNN) 
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As the noise masks become more severe, the performance gap between 
the proposed model and the original Palette increases



Part II / Experiments / Gait Recognition Task

• Comparison of the variations of timesteps for our model
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NFE: Number of Function Evaluation

→ The performance remains stable when the timestep is reduced to 4

V × 1/2 + P × 1/6 V × 2/3 + P × 2/6 V × 3/4 + P × 3/6



Part II / Experiments / Practicality
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• Quantitative results
• Training set: SUSTeck1K with noise masks 

(with VLS-128)
• Testing set: KUGait30 (with VLP-32C)
• Significantly improve identification 

performance even in real-world scenarios
VLP-32C VLS-128

Angular resolution comparison



Part II / Experiments / Practicality
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10 m

20 m

Pedestrian

Pedestrian

Bird’s Eyes View 
(Reference)

Spher. projection Ortho. projection Ortho. projection 
w/ ours

Sensor
(VLP-32C)

Sensor
(VLP-32C)

• Qualitative results
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Part II / Experiments / Practicality

• Qualitative results
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Part II / Summary
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• Introduced an upsampling model for LiDAR-based gait sequence data to address 
missing parts of walking shapes as an inpainting problem

• Demonstrated significant improvements in terms of both generative quality and 
identification performance

• Confirmed the effectiveness even for varying sensor type or measurement 
distance in real-world senarios



Conclusion
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• Part I (Development of gait recognition models using 3D LiDAR):
• Reduces errors caused by linear interpolation by using orthographic projection
• Enhances discriminative capability by leveraging the characteristics of LiDAR 

sensors

• Part II (Development of gait upsampling models for 3D LiDAR):
• Improves the generalizability of identification models for long-distance
• Addresses missing part of gait shapes as an inpainting problem

• Outlook
• Task-agnostic approaches for more diverse real-world scenarios 

(including obstacle occlusion)
• Consider employing Flow Matching (FM) to reduce inference speed



Thank you for your attention!
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