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* Restoration modeling for gait sequence data
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Introduction / Person Identification

* Biometrics
* Technologies using physical characteristics to identify individuals
* Achieved substandtial advancements thanks to progress in Al

* Typical modalities

Fingerprint



Introduction / Gait Recognition

* Biometric technology that identifies people based on their walking patterns
e Operates from a distance without user’s cooperation or physical contact
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Person ID

Measurement of pedestrian data  ID matching with the database Person identification
using a visual device based on gait analysis
[Fan+, CVPR’23]



Introduction / Camera-based Identification

* Main device for gait recognition system so far: RGB cameras

r Pros

= Ease of use (low cost)
= High spatial resolution

N\

Night attribute
[Shen+, CVPR’23]
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Cons

" Leak 3D geometry information

= Sensitive to lighting conditions

= Senstive to varying camera’s
height/angle

High-angle condition
[Zheng+, CVPR’22]




Introduction / 3D LiDAR

* Lighting Detection and Range (LiDAR)
e 3D sensors scanning of surrounding environments

o m
T TR

LIDAR sensor

Self-driving texi (Waymo)

* Well-suited for outdoor applications

Semantic segmentation Object dection/tracking




Introduction / 3D LiDAR

* LiDAR representation comparison

3D point clouds 2D range images
(Spherical projection)

= Three or more coordinates = 2D ordered formats
= Raw geometric data = Ease of use (more practical)
= Unordered nature = Quantization artifacts

= Time-consuming computations



Introduction / 3D LiDAR

* Visualization comparison

RGB camera Depth camera LiDAR sensor

Resolution High
Field-of-View Wide
llumination Robust

— Well-suited for outdoor criminal investigations or security systems!



Introduction / 3D LiDAR

* Visualization comparison

RGB camera Depth camera LiDAR sensor
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Introduction / LiDAR-based Gait Recognition

. Pros

= Wide range of directions/distances
= Robust to adverse weather

* Precise 3D geometry information

A\

y

LiDAR data visualization

Distance

Short

Long

Cons

= Sensitive to distances
= Poor spatial resolution (sparse data)

Sparsity Gait data

Dense

Sparse
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Introduction / Goals

* Primary challenge:
e Sparse pedestrian data caused by long distances

* Goal:
* Improve person identification performance by using deep learning techniques
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Introduction / Goals

* Explored in two aspects

e Part |: Development of gait recognition models using 3D LiDAR

e Part ll: Development of gait upsampling models for 3D LiDAR

DL-based Model Developlement

ldentification

Part |

Part | (1/2)
Chapter 2
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Extension

Part | (2/2)
Chapter 3

Upsampling
Part Il

Chapter 4

Dessertation/presentation flow
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Part | (1/2): Development of Gait Recognition Models
using 3D LiDAR



Part 1 (1/2) / Motivation

* Applications using LiDAR-based person identification:

Security robots

= QOperated 24h a day
= Nighttime surveillance system
= Less conspicuous than humans

Autonomous vehicles

» |dentify specific users
= Detect elderly people

14



Part | (1/2) / Motivation

* Necessary to design a robust identification model for intra-subject changes:
* Viewing angles
 Measurement distances

* |nvariant gait features under these complex conditions:
* Two fixed viewpoints
* Walking pace

3D LiDAR
10m Sensor

15



Part | (1/2) / Related Work

GEl-based identifier
[Benedek+, IEEE T-CSVT’18]

Fully connected

.. . layers:
klxk! kernels, Activity: average pooling layer h);ﬁdden &n

/1 feature maps k2xk2 kernels, /2 feature maps

15t convolutional layer Gait: 2nd convolutional layer

output neurons

Depth-based identifier
[Yamada+, Advance Robotics’20]

Pedestrian
Line 16 #7758

):.{»_;;5:3 Point cloud
S / image if

Velodyne
»a « HDL-32E

Point cloud

Walk along
the line 7

Classification

Performance degradation when the
distance/direction is not constant

Difficult to extract the dynamic
feature under temporal changes



Part | (1/2) / Dataset

e Captured using a Velodyne HDL-32E

* Collected gait sequence data from 31 subjects

Pedestrian walking
along the line

Point cloud
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Velodyne
HDL-32E

0.8m

Data acquisition environment

LiDAR data visualization
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e Subset 1:3.5-6 m
 Subset 2: 6-8.5m

Part | (1/2) / Dataset

* Divided into 4 subsets according to the distance d;

e Subset 3:8.5-11 m
e Subset4:11-13.5m

Contain the changes in the 360
walking direction and the distance
from 3.5t013.5m

Sparse

Bird's eye view
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Pedestrian walking

%
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along the line

Dataéet 4

Velodyne
HDL-32E

Dataset 3 Datasét 2 Dataset‘1
(11~13.5m) (8.5~11m) (6~8.5m) (3.5~6m)
Ct P ; & .
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Part1(1/2) / Method

e Qutline

Gait direction transformation
Input generation Person Identification
Recognition network

Input: LiIDAR pedestrian
sequence data

. Pedestrian Density adaptive —~
. point cloud 2D CNN convLsTM
= i f + O
: % o= P
Raw LiDAR data = ~
T : Dens;_i?tl';/ (a:llc\Ililptive ConvLSTM
! .5
5 ' E _
= = Gait speed info. I 'y
. left—side
LiDAR sensor Mrserrrer e ———————— T eevervsnsesssssssrsmssaned

Human ID



Part 1 (1/2) / Method / Gait Direction Transformation

* Obtain a gait directional angle 6;:
* 0, =arctan(Ct41,y — Ct—1,9) Ct+1,x — Ct—1,x)

* Rotate the P; around c¢; as the z-axis:
* Pen =R;(=0; —7/2) - (Pt — 1)

* The case of generating a back-view gait image:

* Pen =R;(—0; — 1) - (Pen — Ct) Ct+1

P;: Original subject point set for the
timestep t

c;: Center of gravity for a subject

R,: Rotation matrix around the z-axis

E: Subject point set transformed

20



* Examples of GDT

Sensor view

xxxxxxxxx

Left-side view

Front view

xxxxxxxxx

Bird eyes view

Part 1 (1/2) / Method / Gait Direction Transformation
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Part | (1/2) / Method / Input Generation

* Generate three inputs for the proposed network

Ib K € RTXVXHXl
acC

Ileft—side € RTXVXHXl

T
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Part | (1/2) / Method / Input Generation

e Extract gait videos representing the
depth information of pedestrians

 Comparing surface depths at each
pixel position on the projection
plane (Similar to Z-buffer method)

e Obtain the gait image sequencel €
RTXV*HX1 gnd the gait speed
sequence Vg,ir € R’

Subject A

Subject B

Subject C

Subject D

Left-side view

Back view

23



I e RTXVXHXl

Part1(1/2) / Method / Network

Max Pool 2D

UpSampling 2D

Density Adaptive Encoding

oy )
S
3
I
a.---

\ 4
2D Conv. ((5,5),32)
1
= ReLU
1
2D Conv. ((3,3),32)
1
ReLU
1
Max Pool 2D

shared

<

\ 4
2D Conv. ((5,5),32)
1
ReLU
1
2D Conv. ((3,3),32) '™
1
ReLU
1
Max Pool 2D
SFF Operator

----------------------------------

N ——— R R -

N,

Leverage the low resolution
which may be robust to sparse
data and better recognize
coarse-grained patterns

Combine multi-scale features
extracted from different
resolutions

|l
N =

- (Conv2D(I) @ Conv2D (1,51 —res))
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 Composed of CovLSTMs which
is responsible for learning the
spatial-temporal gait features

Part1(1/2) / Method / Network

 Capture spatio-temporal

feature vector
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I e RTXVXHXl

ConvLSTM-based
Temporal Feature Aggregating
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ConvLSTM-based
Temporal Feature Aggregating

» Take advantage of the walking speed information
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Part1(1/2) / Method / Network

Ileft—side € RTXVXHXl

Obtain more discriminative features
from two viewpoints: Ijeft—sige and

Iback

> \
pre-trained
(left-side view) |

Aggregate the outputs of two netwo

rks pre-trained on different viewpoi
nts

pre-trained
(back view)

Density Adaptive Encoding

D Conv. ((3.3), 32) |
T

w2

Gait Speed

=
3
=%

)
I @
D Conv. ((3,3), 32) |- B .
|

ConvLSTM-based
Temporal Feature Aggregating

Avg. Pool

feature vector
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Part | (1/2) / Experiments / Implementation Details

* Four combinations of four subsets were used for testing

‘ Experiment 1

r4
"/‘Ly

11~135m 8:5~11m -6-8.5m

(1)
@) @) @) y 3,5~6m

Probe set

11m = d; < 13.5m

R AFES

Experiment 3

Gallery set

35m=d, <6m 6m=d, <tProbe sety, < 11m

(4)

11~13.5m &4~11m 6-8.5m

Probe set

6m =d, < 85m

Gallery set

35m=d, < 6m 85m=d; < 1lm 11lm = d; < 13.5m

Experiment 2

z
"/]\"

5m

~—

e

11~13.5m| 85~11m -6-8.5m

(4) (3) (2) 1

T 85m

.
RAFS

(1)
3.5~6m

Probe set

85m =d; < 11m

Experiment 4

(4) (3) (2)
11~135m 8:5~11m -6-8.5m

Gallery set

35m=d, <6m 6m=d, <85m 1lm=d, <13.5m

Probe set

3.5m =d, < 6m

Gallery set

6m=d, <85m 85m=d, <1lm 11m =d, < 13.5m
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Part | (1/2) / Experiments / Implementation Details

* Each dataset contains 31 subjects
* Training set : first 16 subjects
e Test set: remaining 15 subjects

 |dentify subjects using the Nearest Neighbor Algorithm (Rank-1)
 Compute cosine similarity between the gallery and probe

* Settings:
. Los§ fu.nctolon: Cross-entropy loss Total training set 4 * 140 * 16 = 8,960
* Optimization: RMSProp
: Total val. set 4 *35*16=2240
* Learning rate: 0.001
* Training batch size: 20 Gallery set (in each pattern) 3*140*15=6300
* Regularization: early stopping Probe set (in each pattern) 1*35%*15=525

* patience: 20



Part | (1/2) / Experiments / Ablation Study

TABLE I: Averaged rank-1 accuracies on our dataset. The recognition accuracy in which the range of the test set is
not included in range of the training sets is shown in bold.

Network | Gallery Probe mean
| 3.5—6m 6—8.5m 8.5—11Im 11—13.5m 3.5—6m 6—8.5m 8.5—11m 11-13.5m | included non-included
v v v 89.90 91.40 88.57 62.67
2V-Gait (ours 3.5
( ) v v v 89.33 91.59 ?-_.:\2 81.71 87.39 72,60
— TFA v v v 88.76 77.44 86.10 80.57
v v v 76.76 91.01 86.48 83.24
v v v 89.71 91.59 89.52 68.00
2V-Gait (ours) v v v 89.52 89.87 71.62 82.48
— TFA + DAE v v v 88.95 85.47 87.81 81.90 87.80 74.04
v v 71.05 91.01 87.62 83.62
. v v 81.33 89.29 83.62 69.71
2V-Gait (ours) v v 82.86 89.29 66.86 83.05 84.26 71,65
— TFA + DAE + PFC v v v 81.14 77.44 83.05 82.48 ' o
v v v 72.57 86.04 82.10 84.76
_ v v v 92.95 05.22 94.86 76.57
2V-Gait (ours) v v v 91.81 095.41 89.71 91.43 93.57 84.27
— TFA 4 DAE + PFC + VFA v v v 92.38 89.29 95.81 90.67 ' -
v v v 81.52 95.22 95.62 91.43

Achieved a better performance by gradually adding the proposed modules

30



Part | (1/2) / Experiments / Main Results

Network |

mean

| 3.5—6m 8.5—11Im 11-13.5m | 3.5—6m 6—8.5m 8.5—11m 11-13.5m included non-included
v v 92.95 05.22 94.86 76.57
. v v 91.81 05.41 89.71 01.43 -
M. 4.2
2V-Gait (ours) v v v 02.38 89.29 05.81 00.67 93.57 84.27
v v 81.52 95.22 95.62 01.43
v v 87.05 88.72 85.71 64.38
i . v v 87.81 88.53 72.76 75.43
GEINet [8] (Shiraga et al.) y y Y 87 43 78.59 83,24 79.81 84.34 73.08
v v 76.57 87.19 84.95 76.19
v v 74.48 76.29 70.67 51.43
i v v 73.14 73.23 59.62 64.57 -
LSTMNet [10] (Yamada et al.) y y Y 74.10 69.02 69.14 6533 70.53 61.78
v v 67.05 71.89 68.00 65.52

* The left-side view gait video Ijef_sige Was used in two previous networks

* Present a better performance when all components were applied
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Part1(1/2) / Summary

The first attempt to develop a LiDAR-based gait recognition model aimed at
enhancing robustnesss against variations in distance and walking direction

Enhance discriminative performance through:
* |nvariant multi-view projection

Generalize gait features under variations in data sparsity variations through:
* Multi-scale spatial encoding
* Walking speed encoding

Build a LiDAR gait dataset and demonstrate the effectiveness of the proposed
identifier

32



Part | (2/2): Development of Gait Recognition Models
using 3D LiDAR



Part | (2/2) / Motivation

* Challengesin Part |1 (1/2):
* Low inference speed and optimization difficulties during training

* Impact of self-occlusion on gait shapes
* The necessary to independently evaluate the performance with respect to

changes in walking direction and measurement distance/sparsity

* Approaches:
* Design a novel attention block more adaptively to fuse two features for

invariant viewpoint and spatial encoding in an end-to-end manner
 Conduct an in-depth ablation study to evaluate the effectiveness of the

proposed modules



Part 1 (2/2) / Method

Overview

Pedestrian
Point Cloud
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Part | (2/2) / Method / Projection

* LiDAR projection comparison

n Pedestrian Points

%
S~

i Height \\‘\ﬁ”
T
e
é

. Depth Map
H N Normalization liqen/2

Vertical
32 Beams

VLP-32C

Spherical projection

et 1611

Pedestrian Points

Side-View / Back-View
1 .
. . Depth Map
3 Normalization Ligen/2
VLP-32C
Gait Direction Estimation i f\
(GDE) [t
Two-Views J

Orthographic Projection

Orthographic projection (proposed)
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Part 1 (2/2) / Method / Gait Direction Transformation

* Obtain a gait directional angle O4;i¢:

Cgait = €17 — o

Hgait — arCtan(cgait,y: Cgait,x)

* Rotate the p;,, around c; as the z-axis:
* ﬁt,n — Rz(_ggait — T[/Z) . (pt,n — Ct)

Pedestrian
Point Cloud
Py
Directional Angle o
(Bgair) o™ (Co,xrCoy)
y-axis Py o
(cracry) GDT

P; = {pt,1;£’t,2» v PN

e
N
Y A ..,

Cepr

1 N
t =y n:1pt'n

Co

R . ™
Left-side View Back View
y'=axis point Cloud y''-axis
4 C A
Projection
o <=
©00) kb « | 00| |
» x'-axis ﬁ »x''-axis
7 - -
- .
Pside,t Pback,t
Consistent
(Walking Direction ) )
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Part 1 (2/2) / Method / Gait Direction Transformation

 Examples of GDT
Depth Seq.

Ortho + Non-GDE + Depth

Ortho + GDE (Side) + Depth Ortho + GDE (Side) + GEI

Orthographic
projction

Ortho + GDE (Back) + Depth Ortho + GDE (Back) + GEI

w/ GDT

Cylin + Non-GDE + Depth + Non-Norm Cylin + Non-GDE + Depth + Norm Cylin + Non-GDE + GEI + Norm

Spherical
projection
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Part | (2/2) / Attention-based Two-feature Fusing

e Architecture of an ATFF block
* An extension of SENets[Hu+, CVPR’18] designed to fuse two similar feature

vectors

-
K
K
B

Cattn

H attn

Wattn

f, € RT*Cattn*Hattn*Wattn

Cattn

H attn

Wattn

—

Linear
_|_
Sigmoid

E
s; ER attnAg

s, =s;—1

S

Zq (= ]Rcattn
Global Average
Pooling

S1 E RCattn \al'ng

A

f,

Element-wise
Adding

f1 € RTXCattnXHattnXWattn

n
>

f1 ftotal
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Part |1 (2/2) / Method / Network

e Architecture of overall recognition network

Viewpoint-adaptive
Encoding (VE)

I e RTXVXH |< & Consine Similarity
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===p Training Mode
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Part |1 (2/2) / Method / Network

* Architecture of spatial encoder uni

Resolution-adaptive Encoding (RE)
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Part | (2/2) / Experiments / Datasets

Captured using a Velodyne VLP-32C
Gait sequence data collected from 30 subjects

Distances: 10 m, 20 m
Angles: 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°

———— - Bl
- - - ~.

- - - ~
-7 S pad N

3D LiDAR ’
Sensor e 2 ./ Sens:

,
2
‘‘‘‘‘
..........

Visualization of data acquisition environment 29



Part | (2/2) / Experiments / Implementment Details

* Each dataset contains 30 subjects
* Training set : first 20 subjects
e Test set: remaining 10 subjects

* Learning settings:
* Loss function: Cross-entropy loss
* Optimization: Adam
* Image size: 64x 44
* Num. of frames: 15
* Training batch size: 42
* Number of training data: 20 * 2 * 8 * 126 = 40,320
* |terations: (40,320/42) * 50 = 48,000
* Height norm. (Spher.): Linear Interpolation
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Part | (2/2) / Experiments / Main Results

* Gallery: 10 m and Probe: 20 m

Networks Modalities Projections Viewpoints Means

Sensor 30.5

Spher.
Side 32.2

Benedek et al. GEl

Sensor 38.7

Ortho.
Side 54.9
Sensor 30.0

Spher.
Side 13.1

Shiraga et al. Depth Seq.

Sensor 42.1

Ortho.
Side 52.3
Sensor 69.1
Side 71.1

Proposed Depth Seq. Ortho.
Back 74.8
Side + Back 81.7

Gallery

Probe
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Part | (2/2) / Experiments / Main Results

* Gallery: 20 m and Probe: 10 m

Networks Modalities Projections Viewpoints Means

Sensor 27.5

Spher.
Side 43.1

Benedek et al. GEl

Sensor 53.3

Ortho.
Side 55.9
Sensor 31.0

Spher.
Side 36.7

Shiraga et al. Depth Seq.

Sensor 38.0

Ortho.
Side 61.3
Sensor 75.2
Side 75.7

Proposed Depth Seq. Ortho.
Back 80.7
Side + Back 80.8

Gallery

Probe
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Part | (2/2) / Experiments / Ablation Study

* Modality and TE

Table 3.4: Effect of input modalities and temporal aggregating manners (%)

Modalities Temporal Encoding (TE) \ean
Silhouette Seq. Depth Seq. 1D-LSTM ConvLSTM [57]

v hidden size = 256 49.2
v hidden size = 512 h&.4
v hidden size = 1024 57.6
v kernel size =3 x 3  69.7
v kernel size =5 x5  67.1
v kernel size =7 x 7  66.2
hidden size = 256 51.8

hidden size = 512 65.2

hidden size = 1024 65.9

kernel size =3 x 3 T72.1
kernel size =5 x 5 70.4
kernel size =7 x 7  68.5

ANENENENENR




Part | (2/2) / Experiments / Ablation Study

* |Impact of RE

Table 3.5: Ablation experiment for resolution-adaptive encoding (RE) (%)

Original Res.(Ihigh-res) Low R.es.(imw_res) Fusion Mean
Methods T-pooling  Attention Targets (fi)

v 63.3

v Hl.4

v v Element-wise Add. 69.9

v v Channel-wise Concat. 69.5

v v SE-Net [22] 71.4

v v ATFF Low Res. (fiow-res) 68.7

v v ATFF v Low Res. (fiow-res) 72.1

v v ATFF v Original Res. (fhigh-res)  71.8
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Part | (2/2) / Experiments / Ablation Study

* Impact of VE

Table 3.6: Ablation experiment for viewpoint-adaptive encoding (VE) (%)

Original view Side-view Back-view Fusion Mean
v 72.1

v 73.4

v 77.3

v v Average Pooling [1]  79.1

v v Max Pooling 78.5

v v Concatenating 77.3

v v ATTF (T'=1) 81.2




Part | (2/2) / Experiments / Practicality

e Quantitative results

Table 3.7: Comparison with prior studies for evaluating practicality by limiting viewing angles (%)

Networks Modalities  Projection Viewpoints Gallery

Sensor-view  Side-view  Back-view 270 © (Side-view) 0 ° (Back-view) 315 ° (Oblique-view)

Spher. v 263 336.8 '_7-5.;4

Benedek et al. [6] GEL v 38.3 37.6 10.2

Ortho. v 44.2 48.1 46.5

v 43.7 51.1 474

Spher. v 26.4 28.1 2?.2

Shiraga et al. [59] GEIL v 17.8 18.8 18.9

Ortho. v 46.5 54.3 51.5

v 51.2 44.7 53.3

Spher. v 31.0 233 321.3

Yamada et al. (Network 1) [76] Depth Seq. v 14.4 16.2 18.0

Ortho. v 53.9 48.6 50.5

v 33.7 45.1 45.6

Spher. v 3}‘0 2§2 336

Yamada et al. (Network 2) [76] Depth Seq. v 152 158 173

Ortho. v 33.5 41.9 45.8

v 43.4 46.6 43.4

v 39.1 53.4 39.5

Spher. v 50.8 47.5 48.3

v 40.4 49.6 47.0

Ours Depth Seq. v v 50.9 49.5 52.1

v 64.3 62.4 68.9

Ortho. v 67.8 61.3 66.6

v 63.3 67.7 67.4

v v 73.0 70.2 72.7




Part | (2/2) / Experiments / Feature Visualization

e Visuailze gait features through a 2D manifold space by using t-SNE
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Part | (2/2) / Experiments / Feature Visualization

* Feature visualization comparison
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Part 1 (2/2) / Summary

* Proposed a attention block to adaptively fuse two gait features

* Explored in-depth from three-perspectives:
* Point cloud projection
e Gait direction transformation
* Recognition network

* Build a LiDAR gait dataset and achieved superior performance of proposed model
in both cross-view and cross-distance condtions
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Part Il: Development of Gait Upsampling Models
for 3D LiDAR



Part 1l / Motivation

* Recent studies on gait recognition using 3D LiDAR have emerged

Pedestrian

o I :—::j “

Point cloud

Point cloud

Walk along Velodyne

+ o
= = c
the line - A s «< HDL-32E c Side-view g
¥ < :
d Center ¢ y7 10.8m
Line 1 c / AW 5m
J e RGGEE LT R T » <

Afilliated Lab
Yamada+

Back-view

2015 2020 2022 2023 2024  Year

Bird-eye’'s-view

":'\ ata
:” St)
e
E

f-‘. T Su

Right-side-view &

A

Lidar range-view

Shen+

St

Other Lab.
Benedek+
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Part 1l / Motivation

* Changes in resolution/sparsity based on distances

it

RGB camera (reference)

LiDAR visualization (VLP-32C)

_

Dist: 10 m

Dist: 20 m Dist: 30 m
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Part 1l / Motivation

Changes in resolution/sparsity based on emission patterns (hardware specifications)

Dist: 10 m

Mechanical type Solid-state type  m——
Velodyne HDL-32E Velodyne VLP-32C Pioneer SSL-SO1
b Use 32 T —
;) identical

Vetoo1* beams




Part 1l / Motivation

Challenges:
e Sparsity of LiDAR data is heavily influenced by measurement distances and
hardware specifications
* Collecting datasets for all distances and sensor types is practically difficult

— Necessary to reconstruct the underlying/complete pedestrian shapes
from sparse data!
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Part 1l / Motivation

* Goals:
* Develop a gait sequence upsampling model for sparse pedestrian data
* Enhance the generalization capability of existing/future identification models

* Approaches:
* Employ a conditional diffusion model
* Restore missing parts of the gait data through an inpainting strategy

Pre-trained on clean

Proposed training data
....... v
l ik . 9
. o c
Upsampler Identifier Q
EerTH [T (o
Sparse LiDAR data Dense LiDAR data
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Part Il / Related Work

* Typical signal/image restoration (inpainting) using diffusion models:

Task-agnostic approach Task-specific approach
A
c GT data
o Restoration Restoration
an GT data +
= model . Model
c Noise pattern
©
=
(a) Inpainting
) g
= £
S £l
O e
X p i Y .
X P
DPS [Chung+, ICLR’23] Palette [Saharia+, CVPR’22]
= Learns the underlying distribution and samples = Conditional diffusion strategy
data by approximating the posterior = Achieves superior performance across
= Tends to be worse than the task-specific approach various multi-tasks

59



Point cloud

Projection

Part Il / Method

Overview

Point cloud

Projection

Input: sparse LiDAR gait sequences

Our results



Part Il / Method / Problem Statement

* In orthographic projection, missing points in gait shapes can be addressed as
distance-independent inpainting problem

Pedestrian point cloud

3D point cloud data

captured by a single
LiDAR sensor cannot be  |ncomplete gait video V=HXy+1Z Gaussian noise

addressed as GT data
due to its self-occlusion

LIDAR sensor ;;-._;;_-:_;

Complete gait video

Orthograhic projection

Captured distance




Part Il / Method / Projection

* Transform a raw pedestrian point cloud sequence
P € RF*N*Cinto a depth video y € RFXIxH*W
from the sensor’s perspective (sensor-view)

,,,,,

* Obtain the rotated point cloud sequence P € /]
RFXNXC y

with a directional angle Osepsor, £
Osensor,r = arctan(c , Cr )
* ﬁf,n — (Pf,n - Cf) ' Rz(esensor,f + 1)

* Project P onto the xz—plane



Part Il / Method / Network

Overall of the upsampling network

Sparse

point cloud seq.

LiDAR
sensop/'

i

" Sensor-view

Conditional
observeation y

Conditional region
masking/concatenation Dense

l point cloud seq.

Reverse process l

o e

. Complete projection seq.
z~N(0,1) Zg Z; X

Extended from 2D image-based Palette [Saharia+, CVPR’22]

* Denoiser: 3D UNet with Relative Positional Embedding
Initialization: z;, «m Oy + (1 —m) O %
Loss function: L7 = Ec3r(0,1),t~u(0,1y[lI€(concat(y, z,); 1) — €]
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Part Il / Experiments / Implementation Details

e Dataset comparison

SUSTeck1K [Shen+, CVPR’23] KUGait30 [Ahn+, IEEE Access’23]

3D LiDAR
Sensor

LiDAR-Camera
Capture System

5m .

For training and For practicality evaluation
generalizability evaluation

Datasets Sensors Beams V/H Res. Subjects Angles Distances
SUSTeck1K VLS-128 128 0.11°/0.1° 1,050 8 7.5m
KUGait30 VLP-32C 32 1.33°/0.1° 30 8 10,20 m




Part Il / Experiments / Implementation Details

e Used noise masks for training and testing in the generalization evaluation

Pepper noise (P)

= Simulate noise in the azimuth based on

X 2/6

SR R e ¢51 L,
ol 4:{”"5:11;'5%. I e
: :..q_ r :-ﬂqir l?"_..l_'__: o, 7 .r'l;‘..l: 2

captured distances

X 1/2

— Artificially degrade the complete gait data from SUSTeck1K by
applying the combination of two different mask types

X 3/4

Represent the beam-level noise at the
elevation of the LiDAR sensors
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Part Il / Experiments / Implementation Details

SUSTeck1K dataset contains 1,050 subjects
* Training set : 250 subjects
* Test set: remaining 800 subjects

Learning settings:
* Learning rate: 0.0003
* input sequence length: 10 frames
* Timesteps: 32

|dentifier for the gait recognition (person identification) task: LidarGait [Shen+, CVPR’23]
* trained on the clean training set of the SUSTeck1K

Experiments:
* Generative quality:
* Quantitative evaluation -> Qualitative evaluation
* @Gait recognition task:
* Genealizability evaluation (on the SUSTeck1K) -> Practicality evaluation (on the KUGait30)
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Part Il / Experiments / Generative Evaluation

* Quantitative results:
e Compared methods:
 Three interpolations
* Palette

* Metrics: PSNR, SSIM, Consistency Vx1/2 V x2/3 V X 3/4

+ + +
Px1/6 PXx2/6 PX3/6

Means (Test set)

Upsampling Vx1/2, Px1/6 Vx2/3, Px2/6 Vx3/4, Px3/6
Approach Method Input Modality | PSNR 1+ SSIM 1 Consistency |  PSNR 1T SSIM 1T Consistency | PSNR 1 SSIM 1+ Counsistency |
Interpolation Nearest-neighbor Depth Image 6.90 0.031 0.041 6.84 0.029 0.043 6.78 0.025 0.045
Interpolation Bilinear Depth Image 20.90 0.852 0.016 20.99 0.841 0.017 20.83 0.840 0.019
Interpolation Bicubic Depth Image 21.05 0.855 0.017 21.08 0.843 0.017 20.90 0.842 0.019
Diffusion Palette [52] Depth Image 26.14 0.940 0.009 2417 0.908 0.013 23.15 0.888 0.017
Diffusion Ours w/o masking loss Depth Video 27.22 0.953 0.007 25.56 0.932 0.010 24.86 0.922 0.011
Diffusion Ours Depth Video 27.27 0.954 0.007 25.59 0.932 0.010 24.89 0.922 0.011

— Our model is superior to all linear interpolations
and vanilla Palette across three metrics 67



Part Il / Experiments / Generative Evaluation

 Upsampled results using the proposed model on SUSTeck1K

VX1/2,Px1/6 VXx2/3,Px2/6 Vx3/4,PX3/6

Input Output Input Output Input Output

AnEnEnn
B
NEENENN




Swichable
Representation

Part Il / Experiments / Generative Evaluation

Upsampled results using our model across three angles on SUSTeck1K

View: 0° View: 45° View: 90°

3D Point Cloud

2.5D Projection

Proposed Proposed Proposed
Upsampling Models Upsampling Models Upsampling Models



Part Il / Experiments / Generative Evaluation

 Upsampled results with various attributes using our model on SUSTeck1K
CR BG UB CR+BG+UB

f=0 f=1  f=2 f=0 f=1  f=2 f=0 f=1  f=2 f=0 f=1  f=2

4_3
Q..
.4.:
F




Part Il / Experiments / Generative Evaluation

 Comparison between our model and vanilla Palette [Saharia+, CVPR’22]:
 The proposed model preserves frame-consistency more effectively

Frame-inconsistent movements

Ours Palette

GT




Part Il / Experiments / Gait Recognition Task

 Quantitative results:
* After restoring missing parts in input data with methods, gait features are
extracted from the data by using the pre-trained LidarGait
* Matche subject ID between Gallery and Probe by using k Nearest Neighbor

(kNN)
Means (Probe set)
Upsampling Vx1/2, Px1/6 Vx2/3, Px2/6 Vx3/4, Px3/6

Approach Method Input Modality | Rankl 7 Rank5 1T Rankl0 T Rankl T Rank5 7T Rankl01 Rankl T Rank5 1 Rankl0 1
1.40 5.85 10.13 0.18 1.08 2.34 0.15 0.82 1.68
Interpolation Nearest-neighbor Depth Image 0.17 0.93 1.78 0.17 0.86 1.67 0.16 0.78 1.54
Interpolation Bilinear Depth Image 1.35 5.16 8.52 0.62 2.58 4.86 0.44 1.96 3.72
Interpolation Bicubic Depth Image 1.51 5.63 9.16 0.73 3.01 5.37 0.52 2.20 4.08
Diffusion Palette [52] Depth Image 23.62 48.69 61.07 9.93 26.61 37.31 7.16 13.79 21.82
Diffusion Ours w/o masking loss ~ Depth Video 31.69 58.57 70.27 18.07 40.72 53.08 11.38 29.72 41.16
Diffusion Ours Depth Video 32.49 59.77 71.28 18.97 42.09 54.52 11.85 30.68 42.26

As the noise masks become more severe, the performance gap between
the proposed model and the original Palette increases
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Part Il / Experiments / Gait Recognition Task

* Comparison of the variations of timesteps for our model

80 A

204

NFE: Number of Function Evaluation

801 Overall@Rank1l 80 1 Overall@Rank1l
Overall@Rank5 Overall@Rank5
—k— Overall@Rank10 —*— Overall@Rank10
60 60 4
S
U 40 -
@]
<

Overall@Rankl 20
Overall@Rank5
—k— Overall@Rank10

2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
NFE NFE NFE

VXx1/2+PX1/6 VX2/3+PX2/6 VX3/4+PXxX3/6

— The performance remains stable when the timestep is reduced to 4
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Part Il / Experiments / Practicality

Quantitative results

Training set: SUSTeck1K with noise masks
(with VLS-128)

Testing set: KUGait30 (with VLP-32C)
Significantly improve identification
performance even in real-world scenarios

0.2 1 ; | ” M Iu i 0.2 {
Velodyne
VLP-32C  -°¢; VLS-128 0%

Angular resolution comparison

Upsampling Overall
Method Gallery (10 m) Probe (20 m) Projection | Rankl 1 Rank5 1
Spher. 5.51 25.98
Ortho. 7.07 30.80
Palette [52] v Ortho. 19.57 56.25
v v Ortho. 25.45 63.54
Ours v Ortho. 21.28 60.94
v v Ortho.

25.97 66.82 74




Part Il / Experiments / Practicality

e (Qualitative results

Bird’s Eyes View Spher. projection  Ortho. projection Ortho. projection
(Reference) w/ ours

—
/ _ Pedestrian
’ 10m .
11/ - Sensor
’ (VLP-32C) W

(

Pedestrian
A

| 20m

s
/ Sensor

(VLP-320)|




Part Il / Experiments / Practicality

e (Qualitative results

Original data (20 m) Restored data

X
/i

3D Point Cloud
w/ global position

2.5D Projection




Part Il / Summary

* Introduced an upsampling model for LiDAR-based gait sequence data to address
missing parts of walking shapes as an inpainting problem

 Demonstrated significant improvements in terms of both generative quality and
identification performance

e Confirmed the effectiveness even for varying sensor type or measurement
distance in real-world senarios
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Conclusion

* Part | (Development of gait recognition models using 3D LiDAR):
 Reduces errors caused by linear interpolation by using orthographic projection
* Enhances discriminative capability by leveraging the characteristics of LiDAR
Sensors

* Part Il (Development of gait upsampling models for 3D LiDAR):
* Improves the generalizability of identification models for long-distance
* Addresses missing part of gait shapes as an inpainting problem

* Qutlook
e Task-agnostic approaches for more diverse real-world scenarios
(including obstacle occlusion)
e Consider employing Flow Matching (FM) to reduce inference speed



Thank you for your attention!
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