### **3D LiDAR-based Gait Analysis for Person Identification** in Long-range Measurement Environments

Jeongho Ahn

Kurazume and Kawamura Lab., Kyushu University

PhD Dissertation Defense Feb 18, 2025

### Outline

- Introduction
- Part 1: Development of gait recognition models using 3D LiDAR
  - Identification modeling for range variations
  - Identification modeling through adaptive learning
- Part 2: Development of gait upsampling models for 3D LiDAR
  - Restoration modeling for gait sequence data
- Conclusion

### **Introduction / Person Identification**

- Biometrics
  - Technologies using physical characteristics to identify individuals
  - Achieved substandtial advancements thanks to progress in AI
- Typical modalities







Fingerprint

Face

### **Introduction / Gait Recognition**

- Biometric technology that identifies people based on their walking patterns
- Operates from a distance without user's cooperation or physical contact



Measurement of pedestrian data using a visual device

ID matching with the database

Person identification based on gait analysis [Fan+, CVPR'23]

### Introduction / Camera-based Identification

• Main device for gait recognition system so far: RGB cameras

Ease of use (low cost)

Pros

High spatial resolution

Night attribute [Shen+, CVPR'23]



#### Cons

- Leak 3D geometry information
- Sensitive to lighting conditions
- Senstive to varying camera's height/angle







High-angle condition [Zheng+, CVPR'22]

- Lighting Detection and Range (LiDAR)
  - 3D sensors scanning of surrounding environments



Self-driving texi (Waymo)

• Well-suited for outdoor applications

Semantic segmentation



#### Object dection/tracking



• LiDAR representation comparison

3D point clouds







- Three or more coordinates
- Raw geometric data
- Unordered nature
- Time-consuming computations

- D ordered formats
- Ease of use (more practical)
- Quantization artifacts

• Visualization comparison

#### RGB camera



#### → Well-suited for **outdoor criminal investigations** or **security systems!**

• Visualization comparison



### **Introduction / LiDAR-based Gait Recognition**



### **Introduction / Goals**

- Primary challenge:
  - Sparse pedestrian data caused by long distances
- Goal:
  - Improve person identification performance by using deep learning techniques

### **Introduction / Goals**

- Explored in two aspects
  - Part I: Development of gait recognition models using 3D LiDAR
  - Part II: Development of gait upsampling models for 3D LiDAR



Dessertation/presentation flow

# Part I (1/2): Development of Gait Recognition Models using 3D LiDAR

# Part I (1/2) / Motivation

• Applications using LiDAR-based person identification:



#### Security robots

- Operated 24h a day
- Nighttime surveillance system
- Less conspicuous than humans

#### Autonomous vehicles



- Identify specific users
- Detect elderly people

## Part I (1/2) / Motivation

- Necessary to design a robust identification model for intra-subject changes:
  - Viewing angles
  - Measurement distances
- Invariant gait features under these complex conditions:
  - Two fixed viewpoints
  - Walking pace



### Part I (1/2) / Related Work

#### **GEI-based identifier** [Benedek+, IEEE T-CSVT'18]





fl feature maps

k2xk2 kernels, f2 feature maps output neurons

#### Difficult to extract the **dynamic** feature under temporal changes

#### Depth-based identifier [Yamada+, Advance Robotics'20]



#### Performance degradation when the distance/direction is not constant

### Part I (1/2) / Dataset

- Captured using a Velodyne HDL-32E
- Collected gait sequence data from **31 subjects**





#### Data acquisition environment



LiDAR data visualization

# Part I (1/2) / Dataset

- Divided into **4 subsets** according to the distance  $d_t$ 
  - Subset 1: 3.5-6 m
  - Subset 2: 6-8.5 m
  - Subset 3: 8.5-11 m
  - Subset 4: 11-13.5 m



Contain the changes in the 360 walking direction and the distance from 3.5 to 13.5 m

# Part I (1/2) / Method





### Part I (1/2) / Method / Gait Direction Transformation

- Obtain a gait directional angle  $\theta_t$ :
  - $\theta_t = \arctan(c_{t+1,y} c_{t-1,y}, c_{t+1,x} c_{t-1,x})$
- Rotate the **P**<sub>t</sub> around **c**<sub>t</sub> as the *z*-axis:
  - $\widehat{\mathbf{p}}_{t,n} = \mathbf{R}_z(-\theta_t \pi/2) \cdot (\mathbf{p}_{t,n} \mathbf{c}_t)$
- The case of generating a back-view gait image:
  - $\widehat{\mathbf{p}}_{t,n} = \mathbf{R}_z(-\theta_t \pi) \cdot (\mathbf{p}_{t,n} \mathbf{c}_t)$
- **P**<sub>t</sub>: Original subject point set for the timestep t
- **c**<sub>t</sub>: Center of gravity for a subject
- $\mathbf{R}_{z}$ : Rotation matrix around the *z*-axis
- $\widehat{\mathbf{P}}_t$ : Subject point set transformed



# Part I (1/2) / Method / Gait Direction Transformation

• Examples of GDT



### Part I (1/2) / Method / Input Generation

• Generate three inputs for the proposed network



# Part I (1/2) / Method / Input Generation

- Extract gait videos representing the depth information of pedestrians
- Comparing surface depths at each pixel position on the projection plane (Similar to Z-buffer method)
- Obtain the gait image sequence  $\mathbf{I} \in \mathbb{R}^{T \times V \times H \times 1}$  and the gait speed sequence  $\mathbf{v}_{gait} \in \mathbb{R}^{T}$

|           | Left-side view                                                                                               | Back view                                                 |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|
| Subject A |                                                                                                              |                                                           |  |  |  |  |
| Subject B | 0 10   10 10   11 10   12 10   13 10   14 10   15 10   16 10   17 10   18 10   19 10   10 10   11 10   10 10 | 5.<br>10.<br>11.<br>11.<br>11.<br>11.<br>11.<br>11.<br>11 |  |  |  |  |
| Subject C |                                                                                                              | 3 .<br>3 .<br>3 .<br>3 .<br>3 .<br>3 .<br>3 .<br>3 .      |  |  |  |  |
| Subject D | 1<br>5<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                           | 5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.  |  |  |  |  |



- Leverage the low resolution which may be robust to sparse data and better recognize coarse-grained patterns
- Combine multi-scale features extracted from different resolutions

$$\hat{\mathbf{F}} = \frac{1}{2} \cdot (\text{Conv2D}(\mathbf{I}) \oplus \text{Conv2D}(\hat{\mathbf{I}}_{low-res}))$$





• Take advantage of the walking speed information

- Obtain more discriminative features from two viewpoints:  $I_{left-side}\,$  and  $I_{back}\,$
- Aggregate the outputs of two netwo rks pre-trained on different viewpoi nts





### Part I (1/2) / Experiments / Implementation Details

• Four combinations of four subsets were used for testing



# Part I (1/2) / Experiments / Implementation Details

- Each dataset contains 31 subjects
  - Training set : first 16 subjects
  - Test set: remaining 15 subjects
- Identify subjects using the Nearest Neighbor Algorithm (Rank-1)
  - Compute cosine similarity between the gallery and probe
- Settings:
  - Loss function: Cross-entropy loss
  - Optimization: RMSProp
  - Learning rate: 0.001
  - Training batch size: 20
  - Regularization: early stopping
    - patience: 20

| Total training set            | 4 * 140 * 16 = 8,960 |
|-------------------------------|----------------------|
| Total val. set                | 4 * 35 * 16 = 2240   |
| Gallery set (in each pattern) | 3 * 140 * 15 = 6300  |
| Probe set (in each pattern)   | 1 * 35 * 15 = 525    |

# Part I (1/2) / Experiments / Ablation Study

TABLE I: Averaged rank-1 accuracies on our dataset. The recognition accuracy in which the range of the test set is not included in range of the training sets is shown in bold.

| Network                                               | Gallery        |                |              | Probe                        |                                         |                                         |                                         | mean                                    |          |              |
|-------------------------------------------------------|----------------|----------------|--------------|------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------|--------------|
|                                                       | 3.5-6m         | 6-8.5m         | 8.5–11m      | 11-13.5m                     | 3.5-6m                                  | 6-8.5m                                  | 8.5–11m                                 | 11-13.5m                                | included | non-included |
| 2V-Gait (ours) $\rightarrow$ TFA                      | √<br>√<br>√    | √<br>√<br>√    | $\checkmark$ | $\checkmark$<br>$\checkmark$ | 89.90<br>89.33<br>88.76<br><b>76.76</b> | 91.40<br>91.59<br>77.44<br>91.01        | 88.57<br><b>73.52</b><br>86.10<br>86.48 | <b>62.67</b><br>81.71<br>80.57<br>83.24 | 87.39    | 72.60        |
| 2V-Gait (ours) $\rightarrow$ TFA + DAE                | √<br>√<br>√    | \$<br>\$<br>\$ | $\checkmark$ | $\checkmark$<br>$\checkmark$ | 89.71<br>89.52<br>88.95<br>71.05        | 91.59<br>89.87<br><b>85.47</b><br>91.01 | 89.52<br><b>71.62</b><br>87.81<br>87.62 | 68.00<br>82.48<br>81.90<br>83.62        | 87.80    | 74.04        |
| 2V-Gait (ours)<br>$\rightarrow$ TFA + DAE + PFC       | √<br>√<br>√    | √<br>√<br>√    | $\checkmark$ | $\checkmark$<br>$\checkmark$ | 81.33<br>82.86<br>81.14<br>72.57        | 89.29<br>89.29<br>77.44<br>86.04        | 83.62<br>66.86<br>83.05<br>82.10        | <b>69.71</b><br>83.05<br>82.48<br>84.76 | 84.26    | 71.65        |
| 2V-Gait (ours)<br>$\rightarrow$ TFA + DAE + PFC + VFA | \$<br>\$<br>\$ | √<br>√<br>√    | $\checkmark$ | $\checkmark$<br>$\checkmark$ | 92.95<br>91.81<br>92.38<br><b>81.52</b> | 95.22<br>95.41<br><b>89.29</b><br>95.22 | 94.86<br><b>89.71</b><br>95.81<br>95.62 | <b>76.57</b><br>91.43<br>90.67<br>91.43 | 93.57    | 84.27        |

• Achieved a better performance by gradually adding the proposed modules

# Part I (1/2) / Experiments / Main Results

| Network                      | Gallery      |              |                              | Probe                                        |                                         |                                         |                                         | mean                                     |          |              |
|------------------------------|--------------|--------------|------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|----------|--------------|
|                              | 3.5-6m       | 6-8.5m       | 8.5–11m                      | 11-13.5m                                     | 3.5-6m                                  | 6-8.5m                                  | 8.5–11m                                 | 11-13.5m                                 | included | non-included |
| 2V-Gait (ours)               | √<br>√<br>√  | √<br>√<br>√  | $\checkmark$<br>$\checkmark$ | $\checkmark$<br>$\checkmark$<br>$\checkmark$ | 92.95<br>91.81<br>92.38<br><b>81.52</b> | 95.22<br>95.41<br><b>89.29</b><br>95.22 | 94.86<br><b>89.71</b><br>95.81<br>95.62 | 7 <b>6.57</b><br>91.43<br>90.67<br>91.43 | 93.57    | 84.27        |
| GEINet [8] (Shiraga et al.)  | $\checkmark$ | $\checkmark$ | $\checkmark$<br>$\checkmark$ | $\checkmark$<br>$\checkmark$<br>$\checkmark$ | 87.05<br>87.81<br>87.43<br><b>76.57</b> | 88.72<br>88.53<br><b>78.59</b><br>87.19 | 85.71<br>72.76<br>83.24<br>84.95        | <b>64.38</b><br>75.43<br>79.81<br>76.19  | 84.34    | 73.08        |
| LSTMNet [10] (Yamada et al.) | $\checkmark$ | $\checkmark$ | $\checkmark$                 | √<br>√<br>√                                  | 74.48<br>73.14<br>74.10<br><b>67.05</b> | 76.29<br>73.23<br><b>69.02</b><br>71.89 | 70.67<br><b>59.62</b><br>69.14<br>68.00 | <b>51.43</b><br>64.57<br>65.33<br>65.52  | 70.53    | 61.78        |

- The left-side view gait video  $I_{left-side}$  was used in two previous networks
- Present a better performance when all components were applied

# Part I (1/2) / Summary

- The first attempt to develop a LiDAR-based gait recognition model aimed at enhancing robustnesss against variations in distance and walking direction
- Enhance discriminative performance through:
  - Invariant multi-view projection
- Generalize gait features under variations in data sparsity variations through:
  - Multi-scale spatial encoding
  - Walking speed encoding
- Build a LiDAR gait dataset and demonstrate the effectiveness of the proposed identifier

# Part I (2/2): Development of Gait Recognition Models using 3D LiDAR

# Part I (2/2) / Motivation

- Challenges in Part I (1/2):
  - Low inference speed and optimization difficulties during training
  - Impact of **self-occlusion** on gait shapes
  - The necessary to **independently evaluate the performance** with respect to changes in walking direction and measurement distance/sparsity
- Approaches:
  - Design a novel attention block more adaptively to fuse two features for invariant viewpoint and spatial encoding in an end-to-end manner
  - Conduct an in-depth ablation study to evaluate the effectiveness of the proposed modules

### Part I (2/2) / Method

• Overview



# Part I (2/2) / Method / Projection

• LiDAR projection comparison



Spherical projection

Orthographic projection (proposed)

Two-Views

Orthographic Projection

Pedestrian Points

Gait Direction Estimation (GDE)

Back-View

Depth Map

Normalization  $l_{width}/2$ 

VLP-32C

Side-View
## Part I (2/2) / Method / Gait Direction Transformation

- Obtain a gait directional angle  $\theta_{gait}$ :
  - $\mathbf{c}_{\text{gait}} = \mathbf{c}_T \mathbf{c}_0$
  - $\theta_{\text{gait}} = \arctan(c_{\text{gait},y}, c_{\text{gait},x})$
- Rotate the  $\mathbf{p}_{t,n}$  around  $\mathbf{c}_t$  as the *z*-axis:

• 
$$\widehat{\mathbf{p}}_{t,n} = \mathbf{R}_z(-\theta_{\text{gait}} - \pi/2) \cdot (\mathbf{p}_{t,n} - \mathbf{c}_t)$$





# Part I (2/2) / Method / Gait Direction Transformation

• Examples of GDT



# Part I (2/2) / Attention-based Two-feature Fusing

- Architecture of an ATFF block
  - An extension of SENets[Hu+, CVPR'18] designed to fuse two similar feature vectors



# Part I (2/2) / Method / Network

• Architecture of **overall recognition network** 



# Part I (2/2) / Method / Network

• Architecture of **spatial encoder unit** 



---- Sharing the same kernels

# Part I (2/2) / Experiments / Datasets

- Captured using a Velodyne VLP-32C
- Gait sequence data collected from **30 subjects**
- Distances: 10 m, 20 m
- Angles: 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°





Visualization of data acquisition environment

# Part I (2/2) / Experiments / Implementment Details

- Each dataset contains 30 subjects
  - Training set : first 20 subjects
  - Test set: remaining 10 subjects
- Learning settings:
  - Loss function: Cross-entropy loss
  - Optimization: Adam
  - Image size: 64x 44
  - Num. of frames: 15
  - Training batch size: 42
  - Number of training data: 20 \* 2 \* 8 \* 126 = 40,320
  - Iterations: (40,320/42) \* 50 = 48,000
  - Height norm. (Spher.): Linear Interpolation

# Part I (2/2) / Experiments / Main Results

• Gallery: 10 m and Probe: 20 m

| Networks       | Modalities   | Modalities Projections |             | Means |
|----------------|--------------|------------------------|-------------|-------|
|                |              | Sphor                  | Sensor      | 30.5  |
| Donodok ot ol  | CEL          | spher.                 | Side        | 32.2  |
| Benedek et al. | GEI -        | Ortho                  | Sensor      | 38.7  |
|                |              | Ortho.                 | Side        | 54.9  |
|                |              | Crahar                 | Sensor      | 30.0  |
| Chirage et al  | Death Cer    | Spher.                 | Side        | 13.1  |
| Shiraga et al. | Depth Seq. – | Ortho                  | Sensor      | 42.1  |
|                |              | Ortho.                 | Side        | 52.3  |
|                |              |                        | Sensor      | 69.1  |
| Dropood        | Donth Cor    | Ortho                  | Side        | 71.1  |
| Proposed       | Depth Seq.   | Urtho.                 | Back        | 74.8  |
|                |              |                        | Side + Back | 81.7  |





Probe

# Part I (2/2) / Experiments / Main Results

• Gallery: 20 m and Probe: 10 m

| Networks       | Modalities | Projections | Viewpoints  | Means |
|----------------|------------|-------------|-------------|-------|
|                |            | Sphar       | Sensor      | 27.5  |
| Donodok ot ol  | CEL        | spher.      | Side        | 43.1  |
| Benedek et al. | GEI -      | Ortho       | Sensor      | 53.3  |
|                |            | Ortho.      | Side        | 55.9  |
|                |            | Sphor       | Sensor      | 31.0  |
| Chirago at al  | Donth Soa  | spher.      | Side        | 36.7  |
| Shiraga et al. | Depth Seq  | Ortho       | Sensor      | 38.0  |
|                |            | Ortho.      | Side        | 61.3  |
|                |            |             | Sensor      | 75.2  |
| Dranacad       | Donth Soc  | Ortho       | Side        | 75.7  |
| Proposed       | Depth Seq. | Ortho.      | Back        | 80.7  |
|                |            |             | Side + Back | 80.8  |





Probe

# Part I (2/2) / Experiments / Ablation Study

• Modality and TE

| Modalities      |              | Temporal Er          | Temporal Encoding (TE)     |        |  |  |  |  |
|-----------------|--------------|----------------------|----------------------------|--------|--|--|--|--|
| Silhouette Seq. | Depth Seq.   | 1D-LSTM              | ConvLSTM [57]              | Witten |  |  |  |  |
| $\checkmark$    |              | hidden size $= 256$  |                            | 49.2   |  |  |  |  |
| $\checkmark$    |              | hidden size $= 512$  |                            | 58.4   |  |  |  |  |
| $\checkmark$    |              | hidden size $= 1024$ |                            | 57.6   |  |  |  |  |
| $\checkmark$    |              |                      | kernel size = $3 \times 3$ | 69.7   |  |  |  |  |
| $\checkmark$    |              |                      | kernel size = $5 \times 5$ | 67.1   |  |  |  |  |
| $\checkmark$    |              |                      | kernel size = $7 \times 7$ | 66.2   |  |  |  |  |
|                 | $\checkmark$ | hidden size $= 256$  |                            | 51.8   |  |  |  |  |
|                 | $\checkmark$ | hidden size $= 512$  |                            | 65.2   |  |  |  |  |
|                 | $\checkmark$ | hidden size $= 1024$ |                            | 65.9   |  |  |  |  |
|                 | $\checkmark$ |                      | kernel size = $3 \times 3$ | 72.1   |  |  |  |  |
|                 | $\checkmark$ |                      | kernel size = $5 \times 5$ | 70.4   |  |  |  |  |
|                 | $\checkmark$ |                      | kernel size = $7 \times 7$ | 68.5   |  |  |  |  |

Table 3.4: Effect of input modalities and temporal aggregating manners (%)

# Part I (2/2) / Experiments / Ablation Study

• Impact of RE

| Table 3.5: Ablation | experiment for | resolution-adaptive | encoding | (RE) (%) |
|---------------------|----------------|---------------------|----------|----------|
|---------------------|----------------|---------------------|----------|----------|

| Original Res. (Ihigh res.) | Low Res.(Î         |                      | Fusion       |                                                | Mean |
|----------------------------|--------------------|----------------------|--------------|------------------------------------------------|------|
| (                          | Low ress (row-res) | Methods              | T-pooling    | Attention Targets $(f_1)$                      |      |
| $\checkmark$               |                    |                      |              |                                                | 63.3 |
|                            | $\checkmark$       |                      |              |                                                | 51.4 |
| $\checkmark$               | $\checkmark$       | Element-wise Add.    |              |                                                | 69.9 |
| $\checkmark$               | $\checkmark$       | Channel-wise Concat. |              |                                                | 69.5 |
| $\checkmark$               | $\checkmark$       | SE-Net $[22]$        |              |                                                | 71.4 |
| $\checkmark$               | $\checkmark$       | ATFF                 |              | Low Res. $(\hat{\mathbf{f}}_{\text{low-res}})$ | 68.7 |
| $\checkmark$               | $\checkmark$       | ATFF                 | $\checkmark$ | Low Res. $(\hat{\mathbf{f}}_{\text{low-res}})$ | 72.1 |
| $\checkmark$               | $\checkmark$       | ATFF                 | $\checkmark$ | Original Res. $(\mathbf{f}_{\text{high-res}})$ | 71.8 |

# Part I (2/2) / Experiments / Ablation Study

• Impact of VE

Table 3.6: Ablation experiment for viewpoint-adaptive encoding (VE) (%)

| Original view | Side-view    | Back-view    | Fusion              | Mean |
|---------------|--------------|--------------|---------------------|------|
| $\checkmark$  |              |              |                     | 72.1 |
|               | $\checkmark$ |              |                     | 73.4 |
|               |              | $\checkmark$ |                     | 77.3 |
|               | $\checkmark$ | $\checkmark$ | Average Pooling [1] | 79.1 |
|               | $\checkmark$ | $\checkmark$ | Max Pooling         | 78.5 |
|               | $\checkmark$ | $\checkmark$ | Concatenating       | 77.3 |
|               | $\checkmark$ | $\checkmark$ | ATTF $(T = 1)$      | 81.2 |

# Part I (2/2) / Experiments / Practicality

#### • Quantitative results

Table 3.7: Comparison with prior studies for evaluating practicality by limiting viewing angles (%)

| Networks                       | Modalities | Projection | Viewpoints   |              |              |                   | Gallery                 |                      |  |  |
|--------------------------------|------------|------------|--------------|--------------|--------------|-------------------|-------------------------|----------------------|--|--|
| TTOTWOTED                      | Modulities | rojection  | Sensor-view  | Side-view    | Back-view    | 270 ° (Side-view) | $0^{\circ}$ (Back-view) | 315 ° (Oblique-view) |  |  |
|                                |            | Spher      | $\checkmark$ |              |              | 26.3              | 36.8                    | 25.4                 |  |  |
| Benedek et al. [6]             | GEI        | spher.     |              | $\checkmark$ |              | 38.3              | 37.6                    | 40.2                 |  |  |
| Donodon of al. [0]             | GLI        | Ortha      | $\checkmark$ |              |              | 44.2              | 48.1                    | 46.5                 |  |  |
|                                |            | Ortho.     |              | $\checkmark$ |              | 43.7              | 51.1                    | 47.4                 |  |  |
|                                |            | Spher      | $\checkmark$ |              |              | 26.4              | 28.1                    | 25.2                 |  |  |
| Shiraga et al [59]             | GEI        | spher.     |              | $\checkmark$ |              | 17.8              | 18.8                    | 18.9                 |  |  |
| Simaga et an [50]              | 0.LI       | Onthe      | $\checkmark$ |              |              | 46.5              | 54.3                    | 51.5                 |  |  |
|                                |            | Ortho.     |              | $\checkmark$ |              | 51.2              | 44.7                    | 53.3                 |  |  |
|                                |            | Spher      | $\checkmark$ |              |              | 31.0              | 25.3                    | 32.3                 |  |  |
| Yamada et al (Network 1) [76]  | Depth Seq. | opner.     |              | $\checkmark$ |              | 14.4              | 16.2                    | 18.0                 |  |  |
|                                |            | Ortho.     | $\checkmark$ |              |              | 53.9              | 48.6                    | 50.5                 |  |  |
|                                |            |            |              | $\checkmark$ |              | 33.7              | 45.1                    | 45.6                 |  |  |
|                                |            | Sphor      | $\checkmark$ |              |              | 31.0              | 28.2                    | 33.6                 |  |  |
| Yamada et al. (Network 2) [76] | Depth Seq. | spher.     |              | $\checkmark$ |              | 15.2              | 15.8                    | 17.3                 |  |  |
| )[]                            |            | Ortho      | $\checkmark$ |              |              | 33.5              | 41.9                    | 45.8                 |  |  |
|                                |            | Ortho.     |              | $\checkmark$ |              | 43.4              | 46.6                    | 43.4                 |  |  |
|                                |            |            | $\checkmark$ |              |              | 39.1              | 53.4                    | 39.5                 |  |  |
|                                |            | Spher      |              | $\checkmark$ |              | 50.8              | 47.5                    | 48.3                 |  |  |
|                                |            | opner.     |              |              | $\checkmark$ | 40.4              | 49.6                    | 47.0                 |  |  |
| Ours                           | Depth Seq. |            |              | $\checkmark$ | $\checkmark$ | 50.9              | 49.5                    | 52.1                 |  |  |
|                                | Lopon soq. |            | $\checkmark$ |              |              | 64.3              | 62.4                    | 68.9                 |  |  |
|                                |            | Ortha      |              | $\checkmark$ |              | 67.8              | 61.3                    | 66.6                 |  |  |
|                                |            | Ortillo.   |              |              | $\checkmark$ | 63.3              | 67.7                    | 67.4                 |  |  |
|                                |            |            |              | $\checkmark$ | $\checkmark$ | 73.0              | 70.2                    | 72.7                 |  |  |

### Part I (2/2) / Experiments / Feature Visualization

• Visuailze gait features through a 2D manifold space by using t-SNE



# Part I (2/2) / Experiments / Feature Visualization

• Feature visualization comparison



# Part I (2/2) / Summary

- Proposed a **attention block** to adaptively fuse two gait features
- Explored in-depth from **three-perspectives**:
  - Point cloud projection
  - Gait direction transformation
  - Recognition network
- Build a LiDAR gait dataset and achieved superior performance of proposed model in both **cross-view** and **cross-distance** condtions

# Part II: Development of Gait Upsampling Models for 3D LiDAR

• Recent studies on gait recognition using 3D LiDAR have emerged



• Changes in **resolution/sparsity** based on **distances** 



Changes in resolution/sparsity based on emission patterns (hardware specifications)



- Challenges:
  - Sparsity of LiDAR data is heavily influenced by measurement distances and hardware specifications
  - Collecting datasets for all **distances** and **sensor types** is practically difficult

→ Necessary to reconstruct the underlying/complete pedestrian shapes from sparse data!

- Goals:
  - Develop a gait sequence upsampling model for sparse pedestrian data
  - Enhance the generalization capability of existing/future identification models
- Approaches:
  - Employ a conditional diffusion model
  - Restore missing parts of the gait data through an inpainting strategy



# Part II / Related Work

• Typical signal/image restoration (inpainting) using diffusion models:



DPS [Chung+, ICLR'23]

- Learns the underlying distribution and samples data by approximating the posterior
- Tends to be worse than the task-specific approach

Task-specific approach





Palette [Saharia+, CVPR'22]

- Conditional diffusion strategy
- Achieves superior performance across various multi-tasks

59

Examples

#### Part II / Method

• Overview



#### Part II / Method / Problem Statement

 In orthographic projection, missing points in gait shapes can be addressed as distance-independent inpainting problem



**3D point cloud data** captured by a single LiDAR sensor **cannot** be addressed as **GT data** due to its **self-occlusion** 

Degradation noise mask Incomplete gait video  $\mathbf{y} = H\mathbf{x}_0 + \mathbf{z}$  Gaussian noise

Complete gait video





# Part II / Method / Projection

- Transform a raw pedestrian point cloud sequence  $\mathbf{P} \in \mathbb{R}^{F \times N \times C}$  into a depth video  $\mathbf{y} \in \mathbb{R}^{F \times 1 \times H \times W}$ from the sensor's perspective (sensor-view)
- Obtain the rotated point cloud sequence  $\widehat{\mathbf{P}} \in \mathbb{R}^{F \times N \times C}$

with a directional angle  $\theta_{\text{sensor},f}$ :

- $\theta_{\text{sensor},f} = \arctan(c_{f,y}, c_{f,x})$
- $\widehat{\mathbf{p}}_{f,n} = (\mathbf{P}_{f,n} \mathbf{c}_f) \cdot \mathbf{R}_z(\theta_{\text{sensor},f} + \pi)$
- Project  $\widehat{\mathbf{P}}$  onto the xz-plane



# Part II / Method / Network

• Overall of the upsampling network



- Extended from 2D image-based Palette [Saharia+, CVPR'22]
  - Denoiser: 3D UNet with Relative Positional Embedding
- Initialization:  $\mathbf{z}_t \leftarrow \mathbf{m} \odot \mathbf{y} + (\mathbf{1} \mathbf{m}) \odot \mathbf{z}_t$
- Loss function:  $\mathcal{L}_{T \to \infty} = \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{1}), t \sim \mathcal{U}(0, 1)} [\|\hat{\epsilon}(\operatorname{concat}(\mathbf{y}, \mathbf{z}_t); \lambda_t) \epsilon\|_2^2]$

# Part II / Experiments / Implementation Details

• Dataset comparison

#### SUSTeck1K [Shen+, CVPR'23]



# For training and generalizability evaluation

#### KUGait30 [Ahn+, IEEE Access'23]





#### For practicality evaluation

| Datasets  | Sensors | Beams | V/H Res.   | Subjects | Angles | Distances |
|-----------|---------|-------|------------|----------|--------|-----------|
| SUSTeck1K | VLS-128 | 128   | 0.11°/0.1° | 1,050    | 8      | 7.5 m     |
| KUGait30  | VLP-32C | 32    | 1.33°/0.1° | 30       | 8      | 10, 20 m  |

# Part II / Experiments / Implementation Details

• Used noise masks for training and testing in the generalization evaluation

Pepper noise (P)

Vertical lines (V)



 Simulate noise in the azimuth based on captured distances  Represent the beam-level noise at the elevation of the LiDAR sensors

→ Artificially degrade the complete gait data from SUSTeck1K by applying the combination of two different mask types

# Part II / Experiments / Implementation Details

- **SUSTeck1K** dataset contains 1,050 subjects
  - Training set : **250 subjects**
  - Test set: remaining 800 subjects
- Learning settings:
  - Learning rate: 0.0003
  - input sequence length: 10 frames
  - Timesteps: 32
- Identifier for the gait recognition (person identification) task: LidarGait [Shen+, CVPR'23]
  - trained on the clean training set of the SUSTeck1K
- Experiments:
  - Generative quality:
    - Quantitative evaluation -> Qualitative evaluation
  - Gait recognition task:
    - Genealizability evaluation (on the SUSTeck1K) -> Practicality evaluation (on the KUGait30)

- Quantitative results:
  - Compared methods:
    - Three interpolations
    - Palette
  - Metrics: PSNR, SSIM, Consistency

| GT | $V \times 1/2$         | $V \times 2/3$          | $V \times 3/4$ |
|----|------------------------|-------------------------|----------------|
|    | +                      | +                       | +              |
|    | $\mathbf{P} 	imes 1/6$ | $\mathbf{P} \times 2/6$ | <b>P</b> × 3/6 |

|               |                       |                | Means (Test set)                                |                 |                          |                                                 |                 |                          |                                                 |                 |                          |
|---------------|-----------------------|----------------|-------------------------------------------------|-----------------|--------------------------|-------------------------------------------------|-----------------|--------------------------|-------------------------------------------------|-----------------|--------------------------|
| Upsampling    |                       |                | $\mathbf{V} \times 1/2,  \mathbf{P} \times 1/6$ |                 |                          | $\mathbf{V} \times 2/3,  \mathbf{P} \times 2/6$ |                 |                          | $\mathbf{V} \times 3/4,  \mathbf{P} \times 3/6$ |                 |                          |
| Approach      | Method                | Input Modality | $\mathrm{PSNR}\uparrow$                         | SSIM $\uparrow$ | Consistency $\downarrow$ | $\mathrm{PSNR}\uparrow$                         | SSIM $\uparrow$ | Consistency $\downarrow$ | $\mathrm{PSNR}\uparrow$                         | SSIM $\uparrow$ | Consistency $\downarrow$ |
| Interpolation | Nearest-neighbor      | Depth Image    | 6.90                                            | 0.031           | 0.041                    | 6.84                                            | 0.029           | 0.043                    | 6.78                                            | 0.025           | 0.045                    |
| Interpolation | Bilinear              | Depth Image    | 20.90                                           | 0.852           | 0.016                    | 20.99                                           | 0.841           | 0.017                    | 20.83                                           | 0.840           | 0.019                    |
| Interpolation | Bicubic               | Depth Image    | 21.05                                           | 0.855           | 0.017                    | 21.08                                           | 0.843           | 0.017                    | 20.90                                           | 0.842           | 0.019                    |
| Diffusion     | Palette [52]          | Depth Image    | 26.14                                           | 0.940           | 0.009                    | 24.17                                           | 0.908           | 0.013                    | 23.15                                           | 0.888           | 0.017                    |
| Diffusion     | Ours w/o masking loss | Depth Video    | 27.22                                           | 0.953           | 0.007                    | 25.56                                           | 0.932           | 0.010                    | 24.86                                           | 0.922           | 0.011                    |
| Diffusion     | Ours                  | Depth Video    | 27.27                                           | 0.954           | 0.007                    | 25.59                                           | 0.932           | 0.010                    | 24.89                                           | 0.922           | 0.011                    |

→ Our model is superior to all linear interpolations and vanilla Palette across three metrics

• Upsampled results using the proposed model on SUSTeck1K



• Upsampled results using our model across three angles on SUSTeck1K



• Upsampled results with various attributes using our model on SUSTeck1K



- Comparison between our model and vanilla Palette [Saharia+, CVPR'22]: ۲
  - The proposed model preserves **frame-consistency** more effectively •



Frame-inconsistent movements

# Part II / Experiments / Gait Recognition Task

- Quantitative results:
  - After restoring missing parts in input data with methods, gait features are extracted from the data by using the pre-trained LidarGait
  - Matche subject ID between Gallery and Probe by using k Nearest Neighbor (kNN)

|               |                       |                | Means (Probe set)              |                                   |                           |                  |                                   |                   |                                |                                   |                   |
|---------------|-----------------------|----------------|--------------------------------|-----------------------------------|---------------------------|------------------|-----------------------------------|-------------------|--------------------------------|-----------------------------------|-------------------|
| Upsampling    |                       |                | V                              | $\times 1/2, \mathbf{P} \times 1$ | 1/6                       | V                | $\times 2/3, \mathbf{P} \times 2$ | 2/6               | V                              | $\times 3/4, \mathbf{P} \times 3$ | 3/6               |
| Approach      | Method                | Input Modality | $\operatorname{Rank1}\uparrow$ | Rank5 $\uparrow$                  | $\mathrm{Rank10}\uparrow$ | Rank1 $\uparrow$ | Rank5 $\uparrow$                  | Rank10 $\uparrow$ | $\operatorname{Rank1}\uparrow$ | Rank5 $\uparrow$                  | Rank10 $\uparrow$ |
|               |                       |                | 1.40                           | 5.85                              | 10.13                     | 0.18             | 1.08                              | 2.34              | 0.15                           | 0.82                              | 1.68              |
| Interpolation | Nearest-neighbor      | Depth Image    | 0.17                           | 0.93                              | 1.78                      | 0.17             | 0.86                              | 1.67              | 0.16                           | 0.78                              | 1.54              |
| Interpolation | Bilinear              | Depth Image    | 1.35                           | 5.16                              | 8.52                      | 0.62             | 2.58                              | 4.86              | 0.44                           | 1.96                              | 3.72              |
| Interpolation | Bicubic               | Depth Image    | 1.51                           | 5.63                              | 9.16                      | 0.73             | 3.01                              | 5.37              | 0.52                           | 2.20                              | 4.08              |
| Diffusion     | Palette [52]          | Depth Image    | 23.62                          | 48.69                             | 61.07                     | 9.93             | 26.61                             | 37.31             | 7.16                           | 13.79                             | 21.82             |
| Diffusion     | Ours w/o masking loss | Depth Video    | 31.69                          | 58.57                             | 70.27                     | 18.07            | 40.72                             | 53.08             | 11.38                          | 29.72                             | 41.16             |
| Diffusion     | Ours                  | Depth Video    | 32.49                          | 59.77                             | 71.28                     | 18.97            | 42.09                             | 54.52             | 11.85                          | <b>30.68</b>                      | 42.26             |

As the noise masks become more severe, **the performance gap** between the **proposed model** and the **original Palette** increases
# Part II / Experiments / Gait Recognition Task

• Comparison of the variations of timesteps for our model



NFE: Number of Function Evaluation

#### $\rightarrow$ The performance remains stable when the timestep is reduced to 4

# Part II / Experiments / Practicality

- Quantitative results
  - Training set: SUSTeck1K with noise masks (with VLS-128)
  - Testing set: **KUGait30** (with **VLP-32C**)
  - Significantly improve identification performance even in real-world scenarios



Angular resolution comparison

| Upsampling   |                          |                        |            | Overall         |                  |
|--------------|--------------------------|------------------------|------------|-----------------|------------------|
| Method       | Gallery $(10 \text{ m})$ | Probe $(20 \text{ m})$ | Projection | $Rank1\uparrow$ | Rank5 $\uparrow$ |
|              |                          |                        | Spher.     | 5.51            | 25.98            |
|              |                          |                        | Ortho.     | 7.07            | 30.80            |
| Palette [52] |                          | $\checkmark$           | Ortho.     | 19.57           | 56.25            |
|              | $\checkmark$             | $\checkmark$           | Ortho.     | 25.45           | 63.54            |
| Ours         |                          | $\checkmark$           | Ortho.     | 21.28           | 60.94            |
|              | $\checkmark$             | $\checkmark$           | Ortho.     | 25.97           | 66.82            |

### Part II / Experiments / Practicality

• Qualitative results



#### Part II / Experiments / Practicality

• Qualitative results



# Part II / Summary

- Introduced an upsampling model for LiDAR-based gait sequence data to address missing parts of walking shapes as an inpainting problem
- Demonstrated significant improvements in terms of both generative quality and identification performance
- Confirmed the effectiveness even for varying sensor type or measurement distance in real-world senarios

#### Conclusion

- Part I (Development of gait recognition models using 3D LiDAR):
  - Reduces errors caused by linear interpolation by using orthographic projection
  - Enhances discriminative capability by leveraging the characteristics of LiDAR sensors
- Part II (Development of gait upsampling models for 3D LiDAR):
  - Improves the generalizability of identification models for long-distance
  - Addresses missing part of gait shapes as an inpainting problem
- Outlook
  - Task-agnostic approaches for more diverse real-world scenarios (including obstacle occlusion)
  - Consider employing Flow Matching (FM) to reduce inference speed

#### Thank you for your attention!